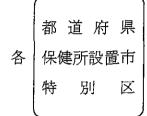
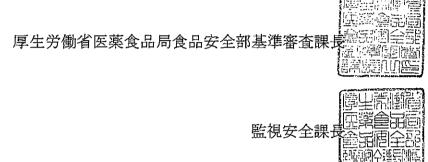
事 務 連 絡 平成21年2月25日

社団法人 日本産科婦人科学会 御中

厚生労働省雇用均等 · 児童家庭局母子保健課


乳児用調整粉乳の安全な調乳、保存及び取扱いに関するガイドラインについて

標記については、厚生労働省医薬食品局食品安全部基準審査課長、監視安全課長連名により各都道府県等衛生主管部(局)長あて別添写のとおり通知されたところです。当該通知の趣旨を御了知いただき、傘下会員に対する周知方よろしくお願いいたします。






食安基発第 0218001 号 食安監発第 0218006 号 平成 2 1 年 2 月 1 8 日



衛生主管部(局)長 殿



乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドラインについて

標記については、平成19年6月5日付け食安基発第0605001号及び食安 監発第0605001号にて通知したところです。

今般、厚生労働科学研究費補助金食品の安心・安全確保推進研究「乳幼児食品中の有害物質及び病原微生物の暴露調査に関する基礎的研究」(主任研究者:五十君静信(国立医薬品食品衛生研究所食品衛生管理部))において、新生児集中治療室(NICU)を有する施設で70℃以上の湯を用いて乳児用調整粉乳の調乳を行うことが必ずしも徹底されておらず、標記ガイドラインの周知・活用状況が十分でないとの研究結果が報告されました。

ものです。

ついては、医療機関及び家庭等において適切な調乳が行われるよう、貴管下の関係者に対し、本ガイドラインの内容について改めて周知されるとともに、本ガイドラインの活用の推進について特段の配慮方よろしくお願いします。

なお、本件については、別途、母子保健担当部局あてに連絡していることを申し 添えます。 .

# (参考)

### 厚生労働省ホームページ

「乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドラインについて」
n° ソフレット <a href="http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/qa/dl/070604-1a.pdf">http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/qa/dl/070604-1b.pdf</a>
全文 <a href="http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/qa/dl/070604-1b.pdf">http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/qa/dl/070604-1b.pdf</a>

#### 分担研究報告書

#### 乳幼児の食品摂取量調査のための基礎研究

~NICU における乳児用粉乳の調整・管理の現状分析~

(分担研究者) 国立健康・栄養研究所国際産学連携センター 吉池信男

(研究協力者) 国立健康・栄養研究所国際栄養プロジェクト 三好美紀

国立健康・栄養研究所国際産学連携センター 石脇亜紗子

#### 研究要旨

本分担研究ではこれまで乳幼児が日常的に摂取する調製粉乳やベビーフード、その他の食品の摂取状況を把握することにより、各食品の個別的な暴露量試算を行うための基礎データを提供した。更に、乳幼児における暴露評価にあたって、乳児用調製粉乳摂取の状況に着目することは重要である。そこで、医療機関における調整粉乳の調整・管理の実態を把握するために全国の新生児集中治療室(NICU)を有する施設を対象にアンケート調査を行った。その結果、施設によって調乳に関わる品質管理・衛生環境の推奨基準にかかわる状況にばらつきのあることがわかった。また、2007年にWHOが刊行した「乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドライン」の周知・活用状況も十分とはいえない。乳幼児における食品安全の観点からも、調乳の系統的なシステムづくり強化が必要であると考えられた。

#### A. 目的

乳児用調製粉乳(PIF)の製造過程において混入する恐れのある Enterobacter sakazakii に対して、それによる感染リスクを最小限に抑える手法を含め、2007 年に"Safe preparation storage and handling of powdered infant formula Guidelines"がWHO から刊行された。わが国では、厚生労働省が平成19年6月に日本語訳「乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドライン」を作成し、都道府県、医師会等を通じて各医療機関に情報提供を行っている。

本分担課題は乳幼児が摂取する調製粉乳やベビーフード、その他の食品の個別的な暴露量試算を行うための基礎データを提供することを目指している。乳幼児における暴露評価にあたって、PIFの製造過程に着目することは重要である。そこで、医療機関における調整粉乳の調整・管理の実態および上記ガイドラインの認知度を把握するために全国の新生児集中治療室(NICU)を有する施設を対象にアンケート調査を行った。また、乳幼児に与える個々の食品としては、特にひじきに着目して、摂取量分布に関する詳細な分析を行った。

#### B. 研究方法

#### 1) NICU全国調査

新生児医療連絡会に加盟する全国主要 NICU 202 施設に、依頼文書、質問紙および返信用封筒を送付 し、郵送により回答を得た(2008年2月実施)。質問紙 (附表)の内容は、1)前述ガイドライン等に記載され ている Enterobacter sakazakii 等の混入に対して、 未熟児等のハイリスク児での感染リスクを最小 限に抑えるための各種手技に関して、その実施状 況、2) WHO ガイドラインの周知・使用状況、 3)施設概要、に関する設問で構成した。今回の 調査では、回答に施設名・回答者名は記入せず、施 設を特定しない形で集計を行った。本調査実施に先 立って、独立行政法人国立健康・栄養研究所研究倫 理委員会(疫学関係)の承認を得た。また、依頼文書 に質問紙への回答と返信をもって調査協力に同意し たものとみなす旨を記載した。

#### 2) 個別食品の摂取量解析

対象者は、1季節で3日間の食事調査を終了した1 ~5歳児279名(男121名、女158名)とした。そのうち、1~2歳児は99名(男45名、女54名)であった。 調査地区は平成16年~18年に調査協力が得られた 19 都道府県 21 の市町村であり、各地域で 25~30 世帯を調査世帯とした。各年ともに平日 2 日と休日 1 日を含む連続しない 3 日間を 5~6 月(春)、8~9 月(夏)、11~12 月(秋)、2~3 月(冬)の 1 年 4 季節で調査を実施した。調査方法は国民健康・栄養調査に準じたもの(世帯に対する秤量記録、比例案分法)であるが、本研究は個々の食品についての詳細な摂取量データが必要であるため、保育所給食については、調査当日の献立表等を収集し、調査員が実際に摂取した内容を把握した上で、調査票に記録した。

各 1 日間の食事調査データから、ひじきの総摂取量を求めた。その算出方法は、食事調査データからひじきの食品番号[9031(乾)・89901(戻し)]を括り、戻し重量として換算したのち、個人の総摂取量を算出した。解析は、3 日間の食事調査データのうち、ひじきを摂取している日数から、摂取していない(0 日摂取者)、1 日間摂取者、2 日間摂取者、3 日間摂取者の4群で各々の人数を求めた。また、3 日間平均の摂取者におけるひじきの粗摂取量、体重 kg あたりの摂取量分布の検討を行った。

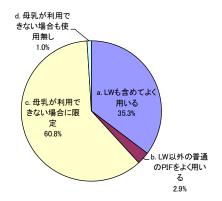
#### C. 研究結果

#### 1) NICU全国調査

#### ①対象施設の特性

質問紙を送付した202施設のうち、102施設から 回答が得られた(回答率:50.5%)。解析対象となった 施設の NICU の概要および管理栄養士の人数を表1 にまとめた。

表1. 対象施設の概要(n=102)


| 変数                     | 施設数 |
|------------------------|-----|
| 1) NICU 内病床数           |     |
| 0-9                    | 14  |
| 10-19                  | 23  |
| 20-29                  | 27  |
| 30-39                  | 24  |
| 40-49                  | 10  |
| 50-                    | 4   |
| 2) 1)のうち、NICU 認可ベッド(%) |     |
| < 20                   | 7   |
| 20-                    | 12  |
| 30-                    | 41  |
| 40-                    | 21  |

|    | 50-                | 21 |
|----|--------------------|----|
| 3) | <br>NICU 入院数(年間)   | 21 |
| "  | < 100              | 4  |
|    | 100-               | 25 |
|    | 200-               | 36 |
|    | 300-               | 17 |
|    | 400-               | 13 |
|    | 500-               | 7  |
| 4) | 3)のうち、1500g 未満児(%) |    |
|    | < 10               | 19 |
|    | 10-                | 21 |
|    | 15-                | 23 |
|    | 20-                | 20 |
|    | 25-                | 10 |
|    | 30-                | 8  |
| 5) | 病院全体の管理栄養士数        |    |
|    | < 2                | 4  |
|    | 2                  | 11 |
|    | 3                  | 13 |
|    | 4                  | 5  |
|    | 5                  | 19 |
|    | 6-9                | 22 |
|    | 10-14              | 10 |
|    | 15-                | 4  |
|    | 未回答                | 14 |

NICU内病床数は10-29床の施設が半数を占めた。このうち、NICU認可ベッドが占める割合が3割~4割の施設が最も多かったが、認可ベッドなしも7施設あった。NICUに入院する乳児数はNICUの規模に左右されるが、年間約200-300人の施設が最も多く、また入院児のうち1500g未満の未熟児の割合が15%以上の施設が6割を占めた。また、病院全体の管理栄養士数は5人以下の施設が過半数であった。

#### ②乳児用調製粉乳(PIF)の調乳・管理に関する現状

NICU における PIF の使用状況は、「母乳が利用できない場合に限定」する施設と「低出生児体重用ミルクを含めてよく用いる」施設とに大きく分かれ、前者が 60.8%、後者が 35.3%であった(図1)。



NICU で使用する PIF の調乳を行う場所(複数回答)は、栄養管理室の調乳専用室が最も多く(n=74)、続いて NICU 内または隣接する調乳専用室(n=28)、NICU 内(n=8)であった。

PIF の調乳に際しては、調乳ユニットを用いる方法が最も安全で効率的とされており、対象施設の約7割がこの方法を用いていたが、一方、14施設は調乳ユニットを用いずに温度計で湯の温度を管理していた。PIF の調乳及び管理のためのマニュアルが未整備である施設が約3割であり、調乳担当者に E. sakazakii に関する情報提供や教育を行っている施設は約半数であった。また、病院給食では、衛生管理上の目的で検査用保存食として50gずつを-20℃で2週間保存することを規定されているが、原材料としての粉乳を検査用保存食としてサンプリングする施設は25施設のみであった(表2)。

表2. PIF 調乳時の衛生管理の現状(複数回答)

| 設問                                      | 回答数 |
|-----------------------------------------|-----|
| 調乳ユニットを用いて、調乳用の湯の温度<br>管理を行っている         | 71  |
| 調乳ユニットは用いていないが、温度計を用いて湯の温度管理を行っている      | 14  |
| 調乳後、終末滅菌を行っている                          | 53  |
| 保存前に急速冷却を行っている                          | 55  |
| 使用した原材料(粉乳そのもの)を検査用保<br>存食としてサンプリングしている | 25  |
| 調乳済のミルクを検査用保存食としてサンプ<br>リングしている         | 44  |
| PIFの調乳及び管理のためのマニュアルが<br>整備されている         | 70  |

また、PIF 調乳後の使用状況については、調乳後、 冷却し冷蔵庫で保管する施設が大部分を占め (n=91)、調乳後すぐ(20分以内)に授乳しているのは 9施設であった。また、冷蔵庫で保管されたミルクを児 に与える前に再加温を開始するタイミングは、「30分 前」が最も多く(n=68)、「15分前」が8施設であった一 方で、5施設が「1時間前」と回答した。大部分の施設 では、「冷蔵庫での保管期間は24時間以内」の WHO 勧告に従っていたが(n=87)、一方では冷蔵保 管以外のミルクを調乳後2時間以内に廃棄している 施設は3割のみであった(n=33)。

#### ③調乳時・授乳時の温度管理について

調乳用の湯の温度は、約半数の施設が推奨されている70℃以上としていた(図2)。いずれの設定温度の場合でも、一度、煮沸して冷ました湯が使われている。冷蔵庫での保管の温度は、4-5℃が過半数であったが、調乳用の湯の温度と同様に施設によってばらつきがみられた(表3)

再加温後、ミルクを児にあたえる際の温度は人肌 程度を基準としており、実際には計測せず、看護師の 体感での判断によることが多い(表4)。

図2. 調乳用の湯の温度

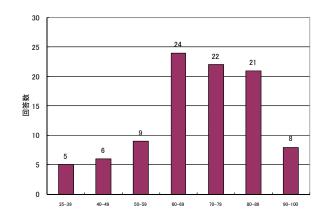



表3. 冷蔵庫での保管温度

| 温度 | 回答数 | 温度 | 回答数 |
|----|-----|----|-----|
| 0  | 2   | 4  | 30  |

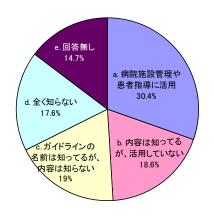
| 0-5 | 1 | 4-6 | 4  |
|-----|---|-----|----|
| 1   | 1 | 4-8 | 1  |
| 2   | 2 | 5   | 27 |
| 2-3 | 1 | 5-7 | 2  |
| 2-4 | 1 | 6   | 7  |
| 2-6 | 1 | 7   | 1  |
| 3   | 2 | 8   | 2  |
| 3-4 | 1 | 10  | 6  |
| 3-6 | 1 |     |    |

表4. 児にあたえる際のミルクの温度

| 温度    | 回答数 | 温度    | 回答数 |
|-------|-----|-------|-----|
| 27-37 | 1   | 37-40 | 1   |
| 30    | 1   | 38    | 8   |
| 30-35 | 2   | 39    | 1   |
| 34-36 | 1   | 39.5  | 1   |
| 35    | 2   | 39-40 | 1   |
| 35-36 | 2   | 40    | 21  |
| 36    | 8   | 40℃以下 | 1   |
| 36-37 | 2   | 41.5  | 1   |
| 36-38 | 2   | 40-50 | 2   |
| 37    | 22  | 42-43 | 1   |
| 37.4  | 1   | 45    | 1   |
| 37-38 | 1   | 人肌    | 4   |

調乳されたミルクは通常、哺乳瓶にて児にあたえられるが、呼吸管理(人工呼吸)が行われている場合など、授乳に哺乳瓶が使えない場合はシリンジ型のチューブフィーディングによる授乳が行われる。一回量投与の平均所要時間は15~30分の間が最も多く、長い場合の所要時間は1時間が多かった(表5)。

表5. チューブフィーディングの投与所要時間


| 平均    | 回答数 | 長い場合  | 回答数 |
|-------|-----|-------|-----|
| 1     | 1   | 3     | 1   |
| 2     | 1   | 5     | 1   |
| 5     | 5   | 10    | 1   |
| 5-10  | 2   | 15    | 1   |
| 10    | 8   | 20-30 | 1   |
| 10-15 | 2   | 30    | 10  |
| 15    | 17  | 30-60 | 1   |

| 15-30 | 1  | 40  | 2  |
|-------|----|-----|----|
| 20    | 19 | 50  | 1  |
| 30    | 32 | 60  | 45 |
| 60    | 6  | 90  | 5  |
|       |    | 120 | 15 |
|       |    | 180 | 4  |

#### ④WHO ガイドラインの認知度

2007年に出された「乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドライン」の周知・使用状況を尋ねた結果、31施設が現在、病院施設管理や患者指導に活用している一方で、56施設が「活用していない」又は「知らない」と回答した(図3)。

図3. WHO ガイドラインの使用状況

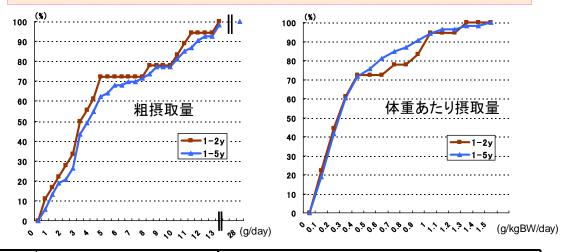


#### 2) 個別食品の摂取量解析

#### ①ひじきを摂取した日数および人数

3日間の食事調査のうち、ひじきを摂取していない者が大半であり、1~5歳で0日摂取者は226名(81%)、1日間摂取者は37名(13%)、2日間摂取者は16名(6%)であった。そのうち、1~2歳では0日摂取者は81名(82%)、1日間摂取者は14名(14%)、2日間摂取者は4名(4%)であった。3日間ともに摂取している者はいなかった(図4)。

#### ②ひじき摂取量分布


3日間平均の摂取者におけるひじきの体重あたり摂取量は  $1\sim5$  歳で 50%タイル値 0.24g、97.5%タイル値 1.49g、99%タイル値 1.59gであった。  $1\sim2$  歳では、それぞれ 0.26g、1.30g、1.30gであった。また粗摂取量では  $1\sim5$  歳で 50%タイル値 3.90g、97.5%タイル

方法: 国民健康・栄養調査方式の食事調査(秤量記録法)を春・夏・秋・冬の1年4季節で実施した。 (各季節平日2日と休日1日を含む連続しない3日間)

対象: 1~2歳の男女99名(99×3日間=297ds)・1~5歳の男女279名(279×3日間=837ds)

解析: ① 3日間調査のうち、摂取した日数および人数を求めた。

② 3日間の平均摂取量を算出し、摂取者のみの分布(粗摂取量・体重あたり摂取量)を示した。



|      | ①3日間のうち摂取した日数及び人数(N) |    |    |    | ②3日間の平均粗摂取量(g/day) [体重あたり摂取量(g/kgBW/day)]    |             |             | (g/kgBW/day)] |
|------|----------------------|----|----|----|----------------------------------------------|-------------|-------------|---------------|
|      | 0日                   | 1日 | 2日 | 3日 | 50%tile 95%tile 97.5%tile 99%tile            |             |             | 99%tile       |
| 1~2歳 | 81                   | 14 | 4  | 0  | 2.99(0.26)                                   | 13.00[1.30] | 13.00[1.30] | 13.00[1.30]   |
| 1~5歳 | 226                  | 37 | 16 | 0  | 3.90(0.24) 13.00(1.11) 23.14(1.49) 28.60(1.5 |             |             |               |

図4 ひじきの3日間平均摂取量分布 (1~2歳及び1~5歳)

値 23.14g、99%タイル値 28.60gであった。1~2歳では、それぞれ 2.99g、13.0g、13.0gであった(図4)。

#### C. 考察

#### 1) NICU全国調查

PIF はその製造過程において Enterobacter sakazakiiや Salmonella entericaなどの病原菌に汚染 されることがあり、調乳が行われる環境によってこの問 題が悪化する可能性が指摘されている。従って、乳 幼児における暴露評価にあたって、PIF の調乳過程 に着目することは重要である。一方、給食管理の中で 調乳についてはこれまではっきりとしたルールがなく、 各医療機関によって調乳方法・管理の基準がまちま ちである可能性が指摘されていた。このような状況の もと、医療機関及び家庭における PIF の衛生的な 取扱いについて普及啓発を行うために、2007年に 「乳児用調整粉乳の安全な調乳、保存及び取扱いに 関するガイドライン」が出された。これらの状況を踏ま え、今回、医療機関における調整粉乳の調整・管理 の実態および上記ガイドラインの認知度を把握するこ とを目的として全国の NICU を有する施設を対象にア ンケート調査を行った。

調乳された PIF は有害細菌の増殖に理想的な条 件となるため、授乳の都度、すぐに授乳することが最 善とされているが、医療機関等では現実的には事前 の一括準備・冷蔵保存が不可欠となる。 今回の対象 施設のうち、9施設が調乳直後の授乳を実践していた が、大部分は調乳後、冷蔵庫で保存し、授乳前に再 加温している。このプロセスの中で重要となるのが、 冷蔵庫の温度(5℃以下)と再加温の時間(15 分以 内)であり、今回の調査では後者の時間に従っている のは8施設のみであった。また、調乳用の湯の温度も 感染リスクを大きく左右するため、WHO ガイドラインで は 70℃以上を推奨しているが、60-69℃の湯を使用 している施設も多かった。一般的に授乳時間が長くな る程、細菌が増殖する可能性が高まるため、特にチュ ーブフィーディングの際には調乳・授乳環境に留意 が必要である。

今回の対象施設の多くは栄養管理室内の調乳専用室において厳しい管理基準のもとで調乳ユニットを用いて調乳を行っている。しかし、PIFの調乳・管理のためのマニュアル整備および調乳担当者への

Enterobacter sakazakii に関する情報提供がなされていない施設も多く、このために施設によって調乳に関わる品質管理・衛生環境の推奨基準にかかわる状況にばらつきがあることがわかった。WHO ガイドラインの周知・活用状況も十分とは言えず、今後の課題と言える。今回の結果から、今後、給食管理の枠組みの中での調乳の系統的なシステムづくりを強化させることが重要と考えられた。

#### 2) 個別食品の摂取量解析

ひじきは、乳幼児で不足しがちな鉄を多く含むこと から、保育所等の給食やベビーフードの食材として使 用されることが多い。従って、食品中からの暴露評価 という観点から、集団として平均摂取量のみならず、 習慣的多食者における摂取量分布を把握しておくこ とが必要である。

昨年度の本分担研究課題においては、国民健康・ 栄養調査(2002-2004 年)の食品摂取量データを用いて、1 歳児 421 名を対象として二次解析を行った。 その結果、1 歳児では成人と比較して、体重 kg 当たりの摂取量分布が高値であることがわかった。しかし、 国民健康・栄養調査は、11 月の1日間に行われる調査であることから、習慣的にどの程度個別食品が摂取されているかの情報が全く得られない。

そこで、本年度は異なるデータセット(1季節で3日間の食事調査を終了した1~5歳児279名)を用いて、ひじきの摂取量について、2次解析を行った。その結果、3日のうち2日摂取している者は4%程度であり、摂取者においても3日平均の摂取量は、95%tileで1.30g/kg/dayとそれほど高くないことがわかった。したがって、偏食による極端な多食がなければ、大きな問題とはならないものと推察された。

#### D. 結論

全国の新生児集中治療室(NICU)を有する施設を対象にアンケート調査を行った結果、医療機関における調整粉乳の調整・管理の実態および「乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドライン」の周知・使用状況を把握することができた。

謝辞:本調査に当たり、川口市立医療センター新生

児集中治療科奥起久子先生、杏林大学医学部小児 科杉浦正俊先生に、ご指導、ご協力をいただきました ことを、深謝いたします。

#### E. 健康危険情報

この研究において健康危険情報に該当するものはなかった。

#### F. 研究発表

なし

# (附表) NICU における乳児用調整粉乳(PIF)の調乳・管理に関する調査

| 1. NICUにおいて、乳児用調整粉乳(PIF)を用いることはどの程度ありますか。一つにOをつけて下さい。 a) 「低出生体重児用ミルク(LW)」も含めてよく用いる。 b) 「低出生体重児用ミルク(LW)」以外の普通のPIFをよく用いる。 c) 母乳(新鮮、冷凍)が利用できない場合に限定して用いる。 d) 母乳が利用できない場合でも用いることはほとんど無い。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>2. NICUで使用するPIFの調乳を行う場所はどこですか。あてはまるもの<u>すべてに</u>Oをつけて下さい。</li> <li>a) 調乳専用室(栄養管理室内)</li> <li>b) 調乳専用室(NICU内あるいは隣接)</li> <li>c) NICU内</li> <li>d) その他 (</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3. PIFの調乳を行う際の衛生管理やモニタリングについて、あてはまるものすべてにOをつけて下さい。 a) 調乳ユニットを用いて、調乳用の湯の温度管理等を行っている。 b) 調乳ユニットは用いていないが、温度計を用いて湯の温度管理を行っている。 c) 調乳後終末滅菌を行っている。 d) 保存前に急速冷却を行っている。 e) 使用した原材料(粉乳そのもの)を検査用保存食*としてサンプリングしている。 f) 調乳済のミルクを検査用保存食*としてサンプリングしている。 g) PIFの調乳及び管理のためのマニュアルが整備されている。 h) 調乳担当者(栄養管理室、NICU病棟内等)に、E. sakazakii に関する情報提供や教育を行っている。 i) その他 (  注) **病院給食の場合、衛生管理上の目的で検査用保存食として50g ずつを-20℃で2週間保存することとなっている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>4. PIFの調乳後の保管及び使用状況について、あてはまるものすべてにOをつけて下さい。</li> <li>a) 調乳後すぐ(20 分以内)に授乳している。</li> <li>b) 調乳後冷却し冷蔵庫で保管している。</li> <li>c) 冷蔵庫で保管したミルクを使用する際には児に、与える直前(約30 分以内)に加温を開始している。</li> <li>d) 冷蔵庫で保管したミルクの再加温は、15 分以内に行っている。</li> <li>e) 冷蔵庫での保管期間を24 時間以内としている。</li> <li>f) 冷蔵で保管されたものを除き、調乳後2時間以内で廃棄している。</li> <li>g) その他 ( )</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>5. 温度管理等についてお伺いします。下記の( )内に数字を記入してください。</li> <li>① 調乳用の湯の温度は、( )度としている。</li> <li>② 冷蔵庫での保管の温度は、( )度としている。</li> <li>③ 児に与える際の温度は、( )度としている。</li> <li>④ チューブフィーディングを行う場合、一回の投与所要時間は約(平均;長い場合)分である。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.「乳児用調整粉乳の安全な調乳、保存及び取扱いに関するガイドライン」(2007 年 WHO/FAO; 仮記 <a href="http://www.nihs.go.jp/hse/food-info/microbial/esakazakii/pif_guidelines_ip.pdf">http://www.nihs.go.jp/hse/food-info/microbial/esakazakii/pif_guidelines_ip.pdf</a> )についておたずねします。 <a href="http://www.nihs.go.jp/hse/food-info/microbial/esakazakii/pif_guidelines_ip.pdf">http://www.nihs.go.jp/hse/food-info/microbial/esakazakii/pif_guidelines_ip.pdf</a> )についておたずはないでは、 <a href="http://www.nihs.go.jp/hse/food-info/microbial/esakazakii/pif_guidelines_ip.pdf">http://www.nihs.go.jp/hse/food-info/microbial/esakazakii/pi</a> |
| c) ガイドラインの名前や存在は知っているが、内容は知らない。 d) まったく知らなかった。 7. 施設の概要についてご記入下さい。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>① NICU内病床( )床 うちNICU認可ベッド( )床</li> <li>② NICU入院数年間 約( )名 うち1500g 未満児 約( )名</li> <li>③ 病院全体での管理栄養士数(委託給食会社等からの派遣を除く)( )名</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 乳児用調製粉乳の安全な調乳、保存及び取扱いに関するガイドラインの概要 (FAO/WHO共同作成)

# 哺乳ビンを用いた粉ミルク の調乳方法



#### Step

粉ミルクを調乳する場所を清掃・消毒します。



#### Step 2

石鹸と水で手を洗い、清潔なふきん、又は使い捨 てのふきんで水をふき取ります。



#### Step 3

飲用水\*を沸かします。電気ポットを使う場合は、スイッチが切れるまで待ちます。なべを使う場合は、 ぐらぐらと沸騰していることを確認しましょう。



#### Step 4

粉ミルクの容器に書かれている説明文を読み、必 要な水の量と粉の量を確かめます。加える粉ミルク の量は説明文より多くても少なくてもいけません。



やけどに注意しながら、洗浄・殺菌した哺乳ビンに 正確な量の沸かした湯を注ぎます。湯は70℃以上 に保ち、沸かしてから30分以上放置しないようにし ます。



#### Step 6

正確な量の粉ミルクを哺乳ビン中の湯に加えます。

※①水道水②水道法に基づく水質基準に適合することが確認されている自家用井戸等の水③調製粉乳の調整用として推奨される、容器包装に充填し、密栓又は密封した水のいずれかを念のため沸騰させたものを使用しましょう。



#### Step 7

やけどしないよう、清潔なふきんなどを使って哺乳 ビンを持ち、中身が完全に混ざるよう、哺乳ビンを ゆっくり振るまたは回転させます。

#### Step 8

混ざったら、直ちに流水をあてるか、冷水又は氷水 の入った容器に入れて、授乳できる温度まで冷や します。このとき、中身を汚染しないよう、冷却水は 哺乳ビンのキャップより下に当てるようにします。

#### Step 9

哺乳ビンの外側についた水を、清潔なふきん、又 は使い捨てのふきんでふき取ります。

#### Step 10

腕の内側に少量のミルクを垂らして、授乳に適した 温度になっているか確認します。生暖かく感じ、熱く なければ大丈夫です。熱く感じた場合は、授乳前に もう少し冷まします。

#### Step 11

ミルクを与えます。

#### Step 12

調乳後2時間以内に使用しなかったミルクは捨てましょう。

注意: ミルクを温める際には、加熱が不均一になったり、一部が熱くなる「ホット・スポット」ができ乳 児の口にやけどを負わす可能性があるので、電子レンジは使用しないでください。



# 乳児用調製粉乳の安全な調乳、 保存及び取扱いに関するガイドライン

(仮 訳)

世界保健機関/国連食糧農業機関共同作成 2007 年

# 目次

| 要旨                        | iv |
|---------------------------|----|
| 謝辞                        | vi |
| 第1部:初めに                   | 1  |
| 1.1 背景                    | 1  |
| 1.2 PIF に関連した疾病           | 2  |
| 1.2.1 <i>E. sakazakii</i> | 2  |
| 1.2.2 Salmonella          | 3  |
| 1.3 感染リスクの最も高い集団          | 3  |
| 1.4 PIF の汚染               | 4  |
| 1.5 母乳の推奨                 | 5  |
| 1.6 目的                    | 5  |
| 1.7 対象                    | 6  |
| 1.8 勧告事項の前提条件             | 6  |
| 1.9 訓練                    | 7  |
| 第2部 医療環境                  |    |
| 2.1 勧告事項                  | 8  |
| 2.1.1 乳児用調製粉乳の使用          | 8  |
| 2.1.2 一般的な要求事項            | 8  |
| 2.1.3 哺乳及び調乳器具の洗浄と滅菌      | 9  |
| 2.1.4 PIF を使用した粉ミルクの調乳    | 9  |
| 2.1.5 時間をおいてからの使用のための事前調乳 | 10 |
| 2.1.6 保存した粉ミルクの再加温        | 11 |
| 2.1.7 調乳した粉ミルクの運搬         | 11 |
| 2.1.8 保存及び授乳時間            | 12 |
| 2.2 勧告の論理的根拠              | 12 |
| 2.2.1PIF の選択              | 12 |
| 2.2.2 一般的な要求事項            | 12 |
| 2.2.3 適正な衛生管理             | 13 |
| 2.2.4 哺乳及び調乳器具の洗浄及び滅菌     | 13 |
| 2.2.5 調乳水の温度              | 13 |
| 2.2.6 一括調乳のための容器の体積       | 14 |
| 2.2.7 保存時間及び授乳時間          | 14 |
| 2.2.8 粉ミルクのラベル表示          | 15 |

| 2.2.9 調乳した粉ミルクの保存       | 15 |
|-------------------------|----|
| 2.2.10 保存した粉ミルクの再加温     | 16 |
| 2.2.11 調乳した粉ミルクの運搬      | 16 |
| 第3部:家庭内において             | 17 |
| 3.1 勧告事項                | 17 |
| 3.1.1 哺乳及び調乳器具の洗浄及び滅菌   | 17 |
| 3.1.2 PIF を用いた粉ミルクの調乳   | 18 |
| 3.1.3 時間をおいてからの使用のための調乳 | 19 |
| 3.1.4 保存した粉ミルクの再加温      | 19 |
| 3.1.5 調乳した粉ミルクの運搬       | 20 |
| 3.2 勧告の論理的根拠            | 20 |
| 3.2.1 適正な衛生管理           | 20 |
| 3.2.2 哺乳及び調乳器具の洗浄及び滅菌   | 21 |
| 3.2.3 調乳水の温度            | 21 |
| 3.2.4 調乳した粉ミルクの保存       | 21 |
| 3.2.5 保存した粉ミルクの再加温      | 22 |
| 3.2.6 調乳した粉ミルクの運搬       | 22 |
| 3.2.7 保存時間及び授乳時間        | 22 |
| 付録 1                    | 24 |
| 付録 2                    |    |
| 付録 3                    | 27 |
| 本文中で引用した参考文献            | 29 |

# 要旨

PIF (powdered infant formula: 乳児用調製粉乳)は、Enterobacter sakazakii (E. sakazakii )の感染による乳児の重篤な疾患や死亡との関連が報告されている。PIFは、その製造過程において Enterobacter sakazakii やSalmonella enterica (S. enterica)などの有害な菌に汚染されることがある。これは、現在の製造技術では滅菌されたPIFを生産することが不可能であるためである。PIFの調乳過程においては、不適切な取扱いによって問題が悪化する可能性がある。

上記のようなPIF中のハザードに対処する必要性を認識し、コーデックス委員会(Codex Alimentarius)は、乳児用食品に関する国際衛生取扱規範(Recommended International Code of Hygienic Practice for Foods for Infants and Children)の改定を決定した。改定に際しては、FAO(Food and Agriculture Organization of the United Nations: 国連食料農業機関)及びWHO(World Health Organization: 世界保健機関)に対し、具体的な科学的助言を要請した。FAO及びWHOは 2004年及び2006年、PIF内に生存するEnterobacter sakazakii及びその他の微生物に関する専門家会議を2回開催し、この助言が2回の専門家会議の報告書に掲載された。この助言の中では、PIFの調乳に関するガイドラインの作成が勧告されている。

2005年、WHOのWHA(World Health Assembly: WHO総会)は、乳児のリスクを最小限に抑えるため、PIFの安全な調乳、取扱い及び保存に関するガイドラインの作成を要求した。

FAO/WHOによるPIF中の E. sakazakii に関する助言には、PIF中の E. sakazakiiの定量的リスク評価 (quantitative microbiological risk assessment)が含まれていた。このリスク評価の一部は、異なった調乳、保存及び取扱い方法による相対的なリスクの減少を決定することであった。当ガイドライン文書での勧告事項は、主にこの定量的リスク評価の結果に基づくものである。Salmonella 菌に関するリスク評価は行われていないが、専門家会議は E. sakazakii に対するリスクコントロールの基本的な原則は、S. entericalにもあてはまるとした。

一般的には、感染のリスクが最も高い乳児には、無菌状態の液状乳児用ミルクが推奨されるが、無菌状態の液状乳児用ミルクが入手できない場合は、PIFを70°C以上の温度の湯で調乳することで、リスクを大幅に減少させることができる。調乳から授乳までの時間を最小限にすることでもリスクは減少し、また、調乳後の保存温度を5°C以下にすることでも減少させることができる。

PIFを使用する者は、乳児用調製粉乳は滅菌された製品ではなく、重篤な疾病を招く可能性を持つ病原菌に汚染されている可能性がありうることを認識しておく必要がある。PIFの正しい調乳と取扱いによって疾病のリスクを減少させることができる。

当ガイドラインは、2部から成る。第1部では、医療環境において、多数の乳児を対象に、専門の育児担当者が大量のPIFの調乳を行う場合に関する助言が示されている。第2部では、家庭におけるPIFの調乳における助言を示し、家庭環境において育児を行う親などを対象としている。

当ガイドラインでは、上記の2通りの状況におけるPIFの調乳に関し、各段階で最も適切な方法を具体的に助言している。哺乳容器や調乳容器の洗浄と滅菌は、安全なPIFの調乳には重要な必要条件である。調乳する際の湯の温度、冷却、保存、授乳時間など、調乳中における最も重要な要因、また、調乳後のPIFの保存と運搬などに焦点を当てて、具体的な助言が述べられている。2つの勧告事項に関する理論的根拠も示されている。

## 謝辞

ガイドラインの作成にあたり協力をして下さった全ての関係者に世界保健機関からお礼を申しあげる。とりわけ、アイルランド食品安全庁(Food Safety Authority of Ireland)、特にジュディス・オコナー (Judith O'Connor)氏及びアラン・ライリー(Alan Reilly)氏には、ガイドラインの作成にあたりご協力いただいた時間、尽力、専門知識に対し心から感謝申しあげる。また、INFOSAN(International Food Safety Authorities Network: 国際食品安全当局ネットワーク)を通した呼びかけに応じて意見や提案を下さった世界 20 ヶ国以上の多くの方々また関諸係団体の皆様方にも感謝する。

当書のガイドラインの作成は、WHOとFAOの共同作業により、WHOのピーター・カリム・ベネンバーク(Peter Karim Ben Embarek)氏、ヤップ・ヤンセン(Jaap Jansen)氏、マーガレット・ミラー(Margaret Miller)氏、ジェニー・ビショップ(Jenny Bishop)氏、ジャニス・バーナット(Janis Bernat)氏、フランソワ・フォンタナ(Françoise Fontannaz)氏、及びヨーゲン・シュルント(Jørgen Schlundt)氏、ならびにFAOのサラ・ケーヒル(Sarah Cahill)氏、マリア・デ・ローデス・コスタリカ(Maria de Lourdes Costarrica)氏の協力のもとに行われた。

## 第1部:初めに

#### 1.1 背景

2004 年、FAO(Food and Agriculture Organization of the United Nations: 国連食糧農業機関)及びWHO(World Health Organization: 世界保健機関)は、ジュネーブにおいて PIF(powdered infant formula: 乳児用調製粉乳)中の Enterobacter sakazakii (E. sakazakii )及びその他の微生物に関する専門家会議を共同開催した。この会議は、CCFH(Codex Committee on Food Hygiene: コーデックス食品衛生部会)が乳児用食品に関する国際衛生取扱い規範(Recommended International Code of Hygienic Practice for Foods for Infants and Children) (CAC, 1979)の改正に際し、科学的助言を求めたことに応えて開催されたものである。

専門家会議は、文献調査に基づき、E. sakazakii 及び Salmonella enterica (S. enterica )がPIFにおける最も懸念される微生物であると結論付けた。また、専門家会議はE. sakazakiiの予備的リスク評価を行い、調乳時における病原菌の殺菌処理の履行(例えばPIFを70° C以上の湯で溶かすことなど)、及び保持時間や授乳時間の短縮がリスクの削減に効果的であることがわかった。この予備的リスク評価に基づき、専門家グループはFAO、WHO、コーデックス、加盟国、非政府組織、及び科学界に対して、リスクの最小化を図るための勧告を行った(付録1)。この勧告には「リスクを最小限に抑えるための乳児用調製粉乳の調乳、使用及び取扱いに関するガイドラインを作成すべきである」という勧告事項も含まれていた。

2005年、WHOのWHA(World Health Assembly: WHO総会)は決議WHA 58.32(WHA, 2005)の中で、乳児へのリスクを最小限に抑えるためのPIFの安全な調乳、取扱い及び保存に関するガイドラインを作成するよう、WHOに対して要請した。

2006年1月、E. sakazakii 及び S. entericalに関する新たな科学的データを考慮する旨のCCFHからの追加の要請を検討し、また、PIF中のE. sakazakiiに関する定量的微生物リスク評価モデルを適用することを目的として、FAO/WHO専門家グループの第2回会議が開催された。このモデルは、2004年に開催された第1回目の会議以来作成されていたものである。リスク評価には、異なった調乳、保存及び取扱い方法による相対的なリスクの減少を決定することが含まれていた。このガイドライン文書に示された勧告事項は、主にこの定量的リスク評価での知見を基にしている。

Salmonellaに関するリスク評価は行われていないが、専門家グループは、E. sakazakii に対する基本的なリスクコントロールの原則がS. entericalにも適用できると報告している。しかし、具体的なリスクの減少の程度は、Salmonella汚染の様態や汚染源、また菌の増殖や生存上の特徴から、多少の相違

があると考えられる。

当ガイダンスの第1案は、既存の各国ガイドラインやリスク評価の結果を基に作成された。ガイドライン案に対して、INFOSAN(International Food Safety Authorities Network: 国際食品安全担当部局ネットワーク)を通じ、多くの意見が求められた。20以上のINFOSAN加盟国や国際的な関連団体から寄せられた意見を踏まえ、ガイドライン案に対し必要な訂正が行われた。

#### 1.2 PIF に関連した疾病

PIFは、最新の衛生基準に沿って製造された製品であっても、無菌の製品ではない。そのため、重 篤な疾病の原因となりうる病原菌を時に含んでいる可能性がある。

FAO/WHO 専門家会議(2004 & 2006)は、*E. sakazakii と Salmonella enterica* が PIF 中における最も懸念される病原菌であると結論付けた。製造過程あるいは調乳過程において *E. sakazakii* または *Salmonella enterica* に汚染された PIF を原因とした、乳児の重篤な疾患及び死亡例が起きている。現在の加工技術では、商業的に無菌状態の PIF を製造することは不可能であるため、PIF の摂取による乳児への感染リスクが潜在する。調乳済み粉ミルクの取扱いや保存が不適切である場合には、このリスクが大きくなる。

PIFは、調乳担当者、また調乳が行われた環境から外因的に汚染される可能性がある。この問題に対処するための具体的な食品衛生管理方法も、当ガイドラインに掲載されている。

#### 1.2.1 E. sakazakii

E. sakazakiiは、新生児の髄膜炎に関係しているとして1958年に初めて問題視され、その後、E. sakazakiiの感染事例は合計約70件報告されている(Drudy et al., 2006)。しかし、どこの国の場合でも、E. sakazakiiの感染は、実際の感染数が報告数を大きく上回っていると考えられる。E. sakazakiiは全ての年齢層で疾病の原因となる可能性があるが、乳児の感染リスクが最も高いと考えられている。

2004年、ニュージーランドとフランスにおける2件の E. sakazakii のアウトブレイクについて、PIFが関与していることが微生物学的に判明した(FAO/WHO, 2006)。フランスでは9人が発症し、乳児2人が死亡した。そのうち8人は低出生体重児(<2 kg)の未熟児で起き、1件は、37週間目で体重3.25 kg で生まれた乳児が感染した。このアウトブレイクに関与した5つの病院での業務状態を調査した結果、ひとつの病院では調乳、及び哺乳ビンの取扱いや保存が奨励された方法で行われておらず、4つの病院では、調乳済みの粉ミルクを温度調整やトレーサビリティ機能のない家庭用冷蔵庫で、24時間を超えて保存していた。

多様なアウトブレイクのいずれにおいても、患者が暴露された*E. sakazakii*の菌数に関する情報はほとんど得られなかった。従って、*E. sakazakii*の用量反応曲線を求めることは不可能である(FAO/WHO, 2006)。しかし、少量の細菌がPIFに存在することで、疾病の原因となることが考えられる。また、調乳済みの粉ミルクを不適切な温度で長時間保存しておくなどして、その中に含まれる*E. sakazakii*の増殖を許してしまえば、発症のリスクは急速に増加する。

米国では、*E. sakazakii*感染の罹患率は乳児100,000人に1人と報告されている。極低出生体重児(1.5 kg未満)の場合は、この率が100,000人当たり9.4人に増加する。(FAO/WHO, 2006)。

#### 1.2.2 Salmonella

1995年以来、PIFに関連したサルモネラ症のアウトブレイクが少なくとも6件、カナダ、フランス、韓国、スペイン、英国及び米国で報告されている(FAO/WHO, 2006)。最も新しいアウトブレイクは、2005年にフランスで起きた発生した*S. agona*のアウトブレイクである。このアウトブレイクでは、104人の乳児が感染したが、その全員が生後12ヶ月齢未満だった。

乳児、あるいは特定の乳児グループにおいて感染を起こしうる菌の量は判明していないが、アウトブレイク調査による情報から、少なくも一部の Salmonella 血清型では、非常に低い菌量で疾病の原因となる可能性があることがわかっている。乳児、特に感染性の高いグループ(未熟児、低出生体重児、免疫障害児)においては、これは深刻な懸念となりうる。

2002年、米国では、乳児のサルモネラ症の罹患率を100,000人あたり139.4人と報告している。この乳児罹患率は、一般人口での罹患率(100,000人あたり16.2人)に比較し、8倍以上高くなっている(CDC, 2002)。

#### 1.3 感染リスクの最も高い集団

E. sakazakiilは全ての年齢層で疾病の原因となりうるが、乳児(1歳未満の子ども)でリスクが高く、特に新生児及び生後2ヶ月未満の乳児で最もリスクが高い。乳児の中で感染リスクの最も高いのは、早産児、低出生体重児(2.5 kg未満)、免疫障害児などである。しかし、その他何らかの理由で障害を持つ乳児も、一般の乳児に比べ、E. sakazakii の感染リスクが高い可能性がある。また、HIVに感染した母親を持つ乳児も、免疫障害がある可能性があり、また特にPIFを必要とするので、感染のリスクが高い(FAO/WHO, 2004)。乳児の中でもE. sakazakiiへの感染リスクが明確に高い二つのグループとしては、生後1ヶ月以上経過してから菌血症を発症した未熟児、及び、新生児期に髄膜炎を発症した満期産児が挙げられる。このため、FAO/WHO専門家作業グループ(2006)は、乳児全体においてリスクが高いが、新生児及び生後2ヶ月未満の乳児でのリスクが最も高いと結論付けている(FAO/WHO, 2006)。

リスクの高い乳児グループが特定されてはいるものの、*E. sakazakii*の感染は、新生時期以外のそれまで健康だった乳児にも発症していることに注意を払うべきである(Gurtler, Kornacki and Beuchat, 2005)。また、感染は、病院内と病院外の両方で起きている。そのため、PIFの安全な調乳と取扱いに関する教育的な情報は、医療従事者、保護者、その他の育児担当者全てに必要である。

サルモネラ症に関しては、重症や死亡に至る可能性が、一般人口よりも乳児で高くなっている。免疫障害のある乳児は特にその恐れが高い。母乳で育てられている乳児は、サルモネラ症に罹患する可能性が50%低いが、*Salmonella*菌が搾った母乳を介して感染した例がいくつか報告されている(FAO/WHO, 2006)。

#### 1.4 PIF の汚染

現在の製造工程では、無菌のPIFを生産することはできない。PIFの E. sakazakii及び Salmonellaへの 汚染は内因性にも、また、外的要因でも起こりうる。内因性の汚染は、製造過程のいずれかの段階で起こる(製造環境あるいは原材料からの汚染など)。

最近のデータでは、Salmonella spp. と E. sakazakiiの微生物生態学上の相違が指摘されている。それによれば、E. sakazakii は、Salmonella と比較して、製造環境により多く存在している。調査によると、E. sakazakiiはPIFのサンプルの3~14%から検出された(FAO/WHO, 2006)が、これまで報告された汚染レベルは、0.36~66.0 cfu/100 g と低い(Forsythe, 2005)。一方、Salmonella はPIFから検出されることはほとんどなく、ある調査では、141の異なった調製粉乳からのサンプルで、Salmonellaが検出されたものはひとつもなかった(Muytjens, Roelofs-Willemse and Jasper, 1988)。また、現在のSalmonellaに関するコーデックス規格は、各25 g のサンプル60件において菌が存在しないというものである。E. sakazakiiに対する具体的な基準は示されておらず、大腸菌群全体を示すカテゴリーに含まれている(CAC, 1979)。この基準では、5検体中、大腸菌群数が3個体/g 未満のサンプルが4検体以上であり、かつ、3を超え20未満のものが5検体中多くても1検体であることが要求されている。この微生物規格に関しては、現在、コーデックス食品衛生部会が検討を行っているところである。

外因性の汚染は、PIFの調乳や授乳の際に汚染された器具(スプーン、ブレンダー、哺乳ビン、乳首など)が使用された場合に起きることがある。また、調乳する環境によっても汚染は起こりうる。

E. sakazakii 及びSalmonella は乾燥状態のPIF中では増殖しないが、その中で長期間生存することができる。E. sakazakiilは、乾燥状態のPIFで1年以上生存することが示されている(Forsythe, 2005)。 一方調乳されたPIFは、病原菌が増殖するのに理想的な環境となる。調乳済みPIFを5° C以下で保存することでSalmonella 及び E. sakazakiiの増殖を防ぐことができるが、これより高い温度(室温など)に

置かれた場合、特に長時間置かれた場合は、*E. sakazakii* あるいは *Salmonella*が急速に増殖する可能性がある。

#### 1.5 母乳の推奨

WHOは、最適な乳児の成長、発達及び健康を達成するためには、誕生後6ヶ月間は母乳のみで育てることが好ましいとしている。その後、2歳あるいはそれ以上まで母乳を続ける場合は栄養上の要件を満たすため、栄養的に適切かつ安全な、補助的な食品を与える必要がある(WHO/UNICEF, 2003)。

母乳による育児を支援し、乳児及び幼少期の子どもに対する母乳の効用を普及させることは大切である。しかし、母乳が入手できない場合、母親が母乳で育てることができない場合、情報に基づき母乳で育てるべきではないという判断がされた場合、母乳による育児が適切ではない場合(例えば母親が母乳に禁忌を示す薬を服用している、あるいは母親がHIVに感染している¹)もある。同様に、極低出生体重児では直接母乳を与えることが不可能な場合もあり、また、母乳が全く出ない場合、あるいは量が足りない場合もある。

母乳で育てない乳児には、当ガイドラインに示された適切な方法で調乳された調製粉乳など、適切な代替乳が必要である。

#### 1.6 目的

このガイドラインの目的は、PIFの安全な調乳、保存及び取扱いに関する勧告事項を示し、*E. sakazakii* 及び*S. enterica*の感染リスクを減少させることである。原則的には、WHO/UNICEF のBFHI (Baby-Friendly Hospital Initiative: 赤ちゃんに優しい病院イニシアティブ)の10ヵ条に従って、医学的に認められた場合<sup>2</sup>のみ使用されるべきである(付録2)。

 $http://www.who.int/child-adolescenthealth/publications/NUTRITION/consensus\_statement.htm$ 

<sup>1</sup> HIVに感染している女性は代替乳が受け入れられ、入手可能で、経済的にも購入可能で、持続的かつ安全でない限り、最初の6ヶ月間は母乳のみで育てることが勧告されている。しかし、代替乳が受け入れられ、入手可能で、経済的にも購入可能で、持続的かつ安全であれば、HIVに感染している女性は母乳をすべて避けることが勧告されている。

<sup>&</sup>lt;sup>2</sup> PIF の流通販売は WHO/UNICEF の母乳代用品販売流通に関する国際基準(International Code of Marketing of Breast-Milk substitutes) (WHO, 1981) の必要要件、また世界保健総会の関連決議を全て満たし行わなくてはならない。この国際基準は、母乳による育児を保護・促進し、また母乳代用品が必要な際には、十分な情報と適切な流通販売を通して、母乳代用品が適切に使用されるようにすることによって、乳児に安全な栄養を十分与えることを目的としている。

当ガイドラインは、国と政府に対し助言を与え、援助となるための一般的な文書として作成されている。当ガイドラインが国レベルで使用される場合は、当該国の条件(気候や社会経済的な相違など)を反映させるべきである。各国政府は、親、育児担当者、及び病院や託児所の職員が行うべき最低限度のトレーニングの要件のアウトラインを定めるべきである。

PIFに関連した疾病の詳細情報、汚染源、*E. sakazakii* 及び *Salmonella* の特徴は、FAO/WHOの報告書(FAO/WHO, 2004, 2006)に記載されているので、このガイドラインでは概要のみを述べる(セクション1.2~1.4)。

#### 1.7 対象

当ガイドラインは、医療環境及び家庭における PIF の調乳に関する勧告事項を述べるものである。

当ガイドラインは、月齢 12 ヶ月以下の乳児に対する PIF の調乳のみに適用される(Codex ALINORM 07/30/26の定義による)(CAC, 2007)。フォローアップ調製粉乳(Codex Standard 156-1987 の定義による)(CAC, 1987)及び特定の医療目的のための乳児用調製粉乳(Codex Alinorm 07/30/26, Appendix II)(CAC, 2007)は、当ガイドラインの対象外である。しかし、他のガイドラインが存在しない場合は、上記の製品の調乳についても、12 ヶ月以下の乳児に対しては PIF のガイドラインに従うべきである。

#### 1.8 勧告事項の前提条件

PIFには病原菌が存在する可能性があるため、2004年にジュネーブで開かれたFAO/WHO合同会議(FAO/WHO, 2004)での勧告事項のひとつであり、また、WHAの決議による要請の基となったのは、PIFの調乳、使用及び取扱いに関する助言が必要であるということだった。これは、PIFの調乳を行う多くの人(一般及び医療関係者の両方)が、当該製品の持つリスクを認知していない、あるいは最善の調乳方法を知らないためである。

勧告事項は、主に、2006年1月に行われたFAO/WHOによるPIFにおける*E. sakazakii*のリスク評価 (FAO/WHO, 2006)の結果をもとに作成されている。作成された定量的リスク評価モデルを用いて、異なる授乳方法を基本となる方法と比較した場合の、相対的なリスクの増加あるいは減少の比率が計算されている。

勧告事項は、医療環境及び家庭においてPIFの調乳と取扱いを行う人々に適用される。一般に、PIFを70°C以上の温度の湯で調乳することで、リスクを大幅に減少させることができる。調乳から摂取までの時間を最小限にすることでもリスクをコントロールできる。

これらの勧告事項は、PIFの調乳を行う者が安全な飲用水、石鹸、清潔な調乳環境、熱湯、及び冷蔵庫を使用できる環境にあることを前提条件としている。水質が悪い場合、病原菌を不活性化し、安全な水を準備するためには、煮沸、塩素消毒、及びろ過が重要な方法である。水の殺菌は次のように行う;水を沸騰させる、1リットルの水あたり3~5滴のブリーチを添加する、あるいは適切なフィルターでろ過して病原菌を物理的に取り除く。

環境によっては(例えば発展途上国、緊急事態など)、上記の資源が全て入手できない場合もある。 その場合における、PIFの使用を原因とする疾病リスクを減少させる最も簡単で最も効果的な方法は、 以下の通りである。

- ・熱湯で調乳し、冷めた後なるべく早く飲ませる。
- ・熱湯が入手できない場合は、PIFを室温の安全な水で調乳し、直ちに飲ませる。

#### 1.9 訓練

PIFを使用して粉ミルクを調乳する者は全て、PIFに関するリスクについて学び、当ガイドラインに基づく安全な調乳方法の訓練を受けるか、あるいは安全な調乳方法の知識を得るべきである。当ガイドラインでは、非常に高い温度の湯を使用するよう勧告しているので、安全な湯の取扱いに関する追加情報または訓練、あるいはその両方が必要である。このガイドラインは2つのメインセクションに分かれている。第2部では、医療環境におけるPIFの調乳に対する勧告事項が、第3部では、家庭環境におけるPIFの調乳に対する勧告事項が、第3部では、家庭環境におけるPIFの調乳に対する勧告事項があるされている。つの環境には多くの類似点があることから、両セクションのガイダンスと理論的根拠の一部も非常に類似している。対象となる最終使用者によって、第2部または第3部を使用し、特定の条件に合った資料を作成するべきである。

# 第2部: 医療環境(Care setting)

PIF(powdered infant formula: 乳児用調製粉乳)は、無菌の製品ではなく、重篤な疾病の原因となりうる有害細菌に汚染される可能性がある。正しい調乳と取扱いによって、疾病のリスクは減少する。

可能な限り、リスクの最も高い乳児には、商業的に滅菌されたすぐに使える液状乳児用ミルクが推奨される。滅菌した液状乳児用ミルクには病原菌が存在せず、感染のリスクもない。しかし、液状乳児用ミルクの使用が必ずしも選択肢(option)とは限らず、PIFの使用が必要となることもある。

PIFは滅菌された製品ではなく、有害な細菌が存在している可能性がある。調乳されたPIFは、病原菌の増殖にとって理想的な環境となる。粉乳中での汚染が非常に低いレベルであっても、PIFの不適切な調乳と調乳後の不適切な取扱いによって、存在していた病原菌が増殖するのに理想的な環境となり、感染のリスクを大幅に高めることになる。しかし、PIFを安全に調乳し正しく取り扱えば、疾病リスクを減少させることができる。

医療環境には、病院、託児所(crèche)のような通所型の施設などがある。病院、特に脆弱性の高い乳児を治療する集中治療室では、前述のように*E. sakazakii* の感染のリスクが最も高い。

病院や託児所では、時間をおいてから使用するために大量のPIFを事前に準備しておく必要がある場合がある。このような方法は、正しく行われなければ、*E. sakazakii* への感染のリスクを増加させることになる。

PIFは無菌製品ではないので、*E. sakazakii*などの菌に感染するリスクを有している。下記の勧告事項には、*E. sakazakii*の感染リスクを減少させるための医療環境におけるPIFの調乳、保存、及び取扱いについての最善の方法が概説されている。これらの勧告事項は、*Salmonella*の感染リスクを減少させるためにも適用できる。

#### 2.1 勧告事項

#### 2.1.1 乳児用調製粉乳の使用

- 1. 乳児用調製粉乳は、乳児の医学的ニーズに基づいて選ぶ。
- 2. 可能な限り、リスクの最も高い乳児には商業的に滅菌された液状乳児用ミルクを使用する。

#### 2.1.2 一般的な要求事項

- 1. 各施設は、PIFの調乳と取扱いに関するガイドライン文書を作成する。
- 2. ガイドラインの実行状況をモニターする。

- 3. PIFを調乳する職員は、ガイドラインに従った十分な訓練と、食品調理のために衛生上必要な要件 に関する訓練を受ける。
- 4. 医療環境で調乳されたPIFには、完全なトレーサビリティが必要である。
- 5. PIFの調乳と保存のみに使用される専用の清潔な区域を用意する。調乳室のレイアウトに関する指導は各国レベルで行う。

#### 2.1.3 哺乳及び調乳器具の洗浄と滅菌

乳児への哺乳と調乳に使用された全ての器具を次の使用前までに徹底的に洗浄及び滅菌することは非常に重要である。

- 1. 哺乳及び調乳器具の洗浄と滅菌を行う(下記参照)前には、必ず手を石鹸と清浄な水で十分に洗う。医療環境では、専用の手洗い用シンクを準備することが望ましい。
- 2. 洗浄:哺乳及び調乳器具(コップ、哺乳ビン、乳首及びスプーンなど)は、熱い石鹸水中で十分に洗 う。哺乳ビンを使用した場合は、清潔なビン用ブラシ、乳首用ブラシを使用し、ビンの内側と外側、乳 首をこすり、残った粉ミルクを全て確実に除去する。
- 3. 哺乳及び調乳器具を洗浄した後は、安全な水で十分にすすぐ。
- 4. 滅菌:市販の滅菌器を使用する際は、メーカーの取扱い説明書に従って行う。哺乳及び調乳器具は、以下の方法で煮沸消毒することもできる。
  - a. 大型の容器に水を満たし、洗浄した哺乳及び調乳器具を完全に水中に浸す(中に空気の泡がないことを確認する)。
  - b. 容器にふたをし、沸騰させる(沸騰して湯が無くならないように注意する)。
  - c. 哺乳及び調乳器具が必要となるまで容器にふたをしておく。
- 5. 滅菌器や容器から哺乳及び調乳器具を取り出す前には、必ず石鹸と清浄な水で手指を十分に洗浄する。滅菌済みの哺乳及び調乳器具の取扱う際には、滅菌したピンセットやトングを使用することが望ましい。
- 6. 再汚染を防ぐため、哺乳及び調乳器具を使用の直前に取り出すことが最良である。滅菌器から取り出された器具をすぐに使用しない場合は、カバーをかけて清潔な場所に保管すべきである。哺乳ビンは、完全に組み立てておけば、滅菌したビンの内側や乳首の内側と外側の汚染を防ぐことができる。

#### 2.1.4 PIF を使用した粉ミルクの調乳

粉ミルクは授乳するたびに調乳し、すぐに授乳するのが望ましい。病院などの医療環境では、多くの乳児のために調乳を行う必要がある。理想的には、ひとりずつ別々のコップや哺乳ビンで調乳することが望ましい。しかし、場合によっては、粉ミルクを大型の容器で調乳し、個々のコップや哺乳瓶に分注することがある。PIF は大型でふたのあいた容器に入っているほど汚染されやすいので、この方法はリスクを高めることになる。また、大量の粉ミルクは冷めるのに時間がかかり、有害細菌が増殖

する可能性が残る。下記の勧告事項には、個々の容器での調乳、あるいはすぐに使用するための大量の調乳する場合の最も安全な方法の概要が示されている。

- 1. 粉ミルクを調乳するところの表面を清掃し消毒する。
- 2.石鹸と清浄な水で手指を洗い、清潔な布か使い捨てのナプキンを用いて水分を拭き取る。
- 3.十分な量の安全な水を沸騰させる。自動湯沸かし器(電気ポット)を使用している場合は、スイッチが切れるまで待つ。その他の場合は、湯が完全に沸騰していることを確認する。

注意:ボトル入りの水も無菌ではないので、使用前に沸騰しなければならない。電子レンジは、加熱が不均衡で、一部に熱い部分(「ホット・スポット」)ができ、乳児の口に火傷を負わす可能性があるので、PIF の調乳には絶対に使用してはいけない。

- 4. 火傷に気をつけて、70°C 以上にまで冷却した適量の沸騰させた水を、清潔で滅菌済みのコップあるいは哺乳ビンに注ぐ。湯の温度は滅菌した温度計を使用して測るべきである。
  - a. 大型の容器で大量に調乳する場合:容器を洗浄し滅菌しておく。容器の大きさは最大でも1リットル以下で、食品用の材料で作られ、かつ高温の液体に使用できるものを使用する。
- 5. 表示された量の PIF を正確に量って加える。指定された量よりも多く、あるいは少なく加えることで、 乳児が病気になることもあり得る。
  - a. 哺乳ビンを使用する場合:清潔で滅菌済みの哺乳ビンの各部品を、メーカーの取扱い説明書に従って組み立てる。熱湯による火傷に注意しながら、中身が完全に混ざるまで容器をゆっくり振とうまたは回転させる。
  - b. コップを使用する場合: 熱湯による火傷に注意しながら、清潔で滅菌済みのスプーンを使用して攪拌して、完全に混ぜ合わせる。
  - c. 大型の容器で大量に調乳する場合:清潔で滅菌済みのスプーンを使用して、均等に混ぜる。 火傷しないように注意しながら、直ちに個々の哺乳用コップあるいは哺乳ビンに分注する。
- 6. 水道の流水の下に置くか、冷水または氷水の入った容器に静置することにより、授乳に適した温度まで短時間で冷却する。冷却水の水面レベルについては、哺乳カップであればカップの上端よりも下、哺乳ビンならばビンの蓋よりも下にくるようにする。
- 7. 哺乳用コップあるいは哺乳ビンの外側を清潔な布または使い捨ての布で拭き、粉ミルクの種類、乳児の名前あるいは識別番号、調乳した日付と時刻、調乳した職員の名前など、必要な情報を表示する。
- 8. 非常に高温の湯が調乳に使用されるため、乳児の口に火傷を負わさないよう、授乳する前に授乳 温度を確認することが不可欠である。必要に応じて、上記ステップ 6 に示した方法で、冷却し続ける こと。
- 9. 調乳後2時間以内に消費されなかった粉ミルクは、全て廃棄すること。

#### 2.1.5 時間をおいてからの使用のための事前調乳

調乳された PIF は有害細菌の増殖に理想的な条件となるため、授乳の都度、PIF を調乳し、すぐに

授乳することが最善である。しかし実際上の理由から、調乳した粉ミルクを事前に準備することが必要になる場合がある。医療環境などでは、大量に準備し、必要となるまで保存しておかなくてはならないこともある。事前に調乳し、後の使用まで保存しておく場合の最も安全な方法が、下記に示されている。冷蔵が不可能な場合は、毎回調乳して直ちに授乳すべきである。後の使用のために事前に準備しておくことはできない。

- 1. セクション 2.1.4. のステップ 1~7 に従って行う。哺乳用コップを使用する場合は、洗浄し滅菌した容量 1 リットル以下のふた付きのビンか容器の中で調乳する。調乳した PIF は、ふた付の容器で冷蔵し、必要に応じてコップに分注することもできる。
- 2. 冷却した粉ミルクは、専用の冷蔵庫に保存する。冷蔵庫の温度は、5°C以下に設定し、毎日モニターする。
- 3. 調乳した粉ミルクは、冷蔵庫で24時間まで保存できる。

大きな容器に入った調乳後の粉ミルクは適切に冷却されないことがあり、有害細菌の増殖を招く可能性がある。従って、大きな容器での冷却あるいは保存は勧められない。

#### 2.1.6 保存した粉ミルクの再加温

- 1. 保存した粉ミルクは、必要とされる直前にのみ冷蔵庫から取り出す。2. 15 分を超える再加温をしない。
- 3. 粉ミルクが均一に加熱されるようにするため、蓋付きの広ロビン又は容器を定期的に振とうする。 注意: 電子レンジは、加熱が不均衡で、一部に熱い部分(「ホット・スポット」)ができ、乳児の口に火傷を負わす可能性があるので、温め直しには絶対に使用してはいけない。
- 4. 乳児の口元の火傷を防止すべく、授乳温度を確認する。
- 5.2 時間以内に飲まなかった再加温した粉ミルクは、全て廃棄する。

#### 2.1.7 調乳した粉ミルクの運搬

多くの医療環境で、粉ミルクはひとつの調乳室で調乳され、そこから各棟などへ運搬される。調乳した粉ミルクを運搬することで、調乳から授乳までの時間が長くなり、有害細菌の増殖する機会を提供し、リスクをもたらす。調乳後2時間以内に授乳されない場合は、運搬まで冷蔵し、冷蔵状態(低温)で運搬し、目的地で温め直すべきである。調乳された粉ミルクの運搬について最も安全性の高い方法の概略を以下に示す。

- 1. 調乳後2時間以内に授乳される場合:
  - a. セクション 2.1.4 に示した方法で調乳し、
  - b. 直ちに運搬して使用する。
- 2. 調乳後2時間以内に授乳されない場合:
  - a. セクション 2.1.5 に示した方法で調乳・冷蔵保存し、

- b. 運搬前に低温状態であることを確認し、
- c. 運搬する直前にのみ冷蔵庫から取り出し、
- d. 低温状態の粉ミルクを運搬(運搬に30分以上かかる場合は、冷蔵状態での運搬あるいはクールバッグの使用が望ましい)した上で、
- e. 目的地においてセクション 2.1.6 の方法で温め直すか、あるいは、
- f. 低温または冷蔵状態で運搬された粉ミルクは、目的地で冷蔵庫にもどし、調乳後 24 時間以内に使用することも可能である。温めた粉ミルクや残った粉ミルクは、冷蔵庫には戻さず、2 時間 以内に使用されない場合は廃棄する。

#### 2.1.8 保存及び授乳時間

- 1. 授乳されなかった粉ミルクは全て調乳後2時間以内に廃棄する(冷蔵状態のものは除く)。
- 2. 調乳後の粉ミルクは冷蔵庫(5°C以下)で24時間まで保存できる。
- 3. 残った粉ミルクは全て廃棄する。
- 4. 継続授乳あるいはボーラス投与(鼻腔栄養又は経管栄養)による授乳は、室温で 2 時間以内とすることが望ましい。
- 5. 継続授乳あるいはボーラス投与による授乳中は粉ミルクを温めてはいけない。

#### 2.2 勧告の論理的根拠

#### 2.2.1PIF の選択

PIF については、乳児の医学的な要求に基づいて選択されるべきである。

特に、高リスクの乳児に授乳する場合、医療機関においては可能な限り、商業的滅菌済みの液体 ミルクを使用すべきである。こうした液体ミルクには有害細菌が含まれていない。新生児集中治療室 (NICU)のような医療施設においては、*E.Sakazakii*による感染リスクの最も高い乳児ー即ち、生後2ヶ 月未満の新生児、特に未熟児や低出生体重児(<2kg)、あるいは免疫障害を持つ乳児ーに対する看 護を提供している。しかしながら、滅菌済みの液体ミルク(例えば、特別な栄養素を必要とする乳児向 けのもの)が常に入手できるわけではないので、代用としてPIFが用いられる場合もあろう。

#### 2.2.2 一般的な要求事項

病院等の施設における調乳については、入念な管理が行なれるべきである。その理由として、これらの施設では粉ミルクを大量に調乳することを迫られる場合があり、そうした粉ミルクを消費する乳児が特定の感染リスクに晒される危険性があるためである。

PIF から調乳済み粉ミルクをつくる際の管理に役立てるため、また有害細菌による二次汚染のリスクを減少させるため、調乳及び調乳された粉ミルクを保存するための専用区画を設けるべきである。

PIF から調乳済み粉ミルクをつくることやそうした粉ミルクの取扱いについては、各施設で文書化したガイドラインを確立し、その実施状況をモニターすべきである。こうすることにより、一貫して安全な取扱いが確保される。調乳を行なうスタッフに対して十分な研修を実施することで、彼ら自身が PIF に係わるリスクを理解し、このようなリスクを確実に減少又は管理するためにどのような措置を講ずるべきかを認識することになる。

#### 2.2.3 適正な衛生管理

E.Sakazakii によるアウトブレイクのいくつかについて、その推定原因として「劣悪な衛生状態」が疑われていることが報告されている(Forsythe、2005年)。調乳担当者にあっては、調乳を行なう前に、調乳器具の表面を洗浄及び消毒すべきであり、また石鹸と清浄な水にて手指を洗浄すべきである。これは、有害細菌が手指に付着して持ち込まれる場合や、調乳器具の表面に存在している場合があるためである。手指の洗浄や器具表面の洗浄及び消毒が、調乳の間に粉ミルクが汚染されるリスクを減らすことになる。

E.Sakazakiiを含めた有害細菌類(Drudyら、2006年)が乳児の尿及び便中から見つかることから、トイレの使用後及びオムツ交換の後に手指を洗浄しなければならない。こうした細菌類は手指に簡単に付着し、調乳する間に粉ミルクを汚染することがある。

#### 2.2.4 哺乳器及び調乳器具の洗浄及び滅菌

E.Sakazakii のアウトブレイクの中には、調乳で用いた器具に起因するものも報告されている (Gürtler ら、2005 年)。E.Sakazakii は環境中に広く存在しており、ラテックスやシリコン及びステンレス 鋼のような、一般的に、乳児の哺育器具に使用される表面部分に付着し増殖(「バイオフィルム」を形成)することが示されている。従って、全ての哺乳器及び調乳器具(例えば、哺乳カップや哺乳ビン、リング及び乳首)は、その使用前に徹底して洗浄及び滅菌することが重要である。これは、これらの器具類の表面におけるバイオフィルムの形成が感染の温床となり得ることがその理由であって、こうしたバイオフィルムは調乳された粉ミルクを持続的に汚染し続ける可能性がある(Iversen、Lane 及び Forsythe、2004 年)。

#### 2.2.5 調乳水の温度

FAO/WHO のリスク評価(FAO/WHO、2006 年)によると、70° C 以上の湯で PIF を調乳する場合、粉乳中に存在している *E.Sakazakii* についてはこの温度で死滅することから、リスクは劇的に減少する。このリスク低下レベルは、授乳時間が長くなった場合(上限は2時間まで)や、周囲の室温が35° Cに達する場合であっても維持されるものである。結果として、70° C 以上の湯で PIF を調乳することで、全ての乳児一食の遅い乳児のみならず、調乳した粉ミルクを冷蔵することが容易には出来ないような温暖な地域(例えば、発展途上国)の乳児であっても一に対するリスクを劇的に減少させることになる。

70° C に満たない湯で PIF を調乳する場合、PIF 中に存在する *E.Sakazakii* を完全に不活性化させるのに十分な温度には到達していないことになる。これは以下の二つの理由から懸念される事項である:a) 少数の細菌体であっても疾病の原因となり得ること。従って、PIF 中に存在している *E.Sakazakii* を死滅させることが重要である。及び b) 生き残った *E.Sakazakii* が PIF 中で増殖する可能性があること。こうしたリスクは調乳した粉ミルクを、冷蔵温度以上の温度で長時間放置した場合に増加する。

PIFの調乳において熱湯を用いることについて懸念が持ち上がっているが、70°C以上の温度の湯を用いたときだけ、E.Sakazakii によるリスクは劇的に低下するのである(付録 3 参照)。現在、多くの PIF 製品の取扱い説明書では PIF を 50°C 付近の湯で調乳するよう求めているが、FAO/WHO のリスク評価によれば、50°Cの湯による調乳は、調乳した粉ミルクを直ちに消費しない限り、一般的に見てリスクを最も増加させることになる。50°Cの湯で PIF を調乳する場合、如何なる状況下であれ、リスクを減少させることにはならないのである。このリスク評価の結果に照らして、メーカーの取扱い説明書を見直すべきである。

#### 2.2.6 一括調乳のための容器の体積

医療機関ではしばしば、単独の大きな容器中で多くの粉ミルクを調乳し、攪拌した後、哺乳ビンや哺乳カップに分注することがよくある。事例証拠(Anecdotal evidence)が示すところによれば、大量に調乳したものを調乳容器内で長時間にわたって放冷している(冷蔵の有無に係わらず)という事例もあると聞く。

調乳する容器が大きくなればそれだけ感染のリスクも高まる。なぜならば、

- ・調乳した粉ミルクが汚染される可能性は更に大きくなり、なお且つ
- ・大きな容器を冷却するには長い時間がかかる。これは即ち、調乳された粉ミルクが有害細菌の増殖 を促すような温度で放置されることを意味している。

FAO/WHO のリスク評価で明らかにされたのは、調乳用及び冷却用により大きな容器(25 リットル)を使用すると、調乳した粉ミルクがそれだけゆっくりと冷やされことになるため、感染のリスクは高まる、という事実である。従って、調乳した粉ミルクについては可能な限り小さな容器内で冷却すべきである。

#### 2.2.7 保存時間及び授乳時間

PIF 中の E.Sakazakii に対する FAO/WHO によるリスク評価によれば、授乳時間が長くなる程、一般的にはそれだけ細菌が増殖する可能性が高まるため、リスクの増加へと結び付くことになる。周辺温度が更に暖かく(30° C 及び 35° C)なればこうしたリスクは高くなる。但し、70° C 以上の湯で PIF が調乳される場合、リスクは劇的に減少し、2 時間という授乳時間の間はこうしたリスクの減少が有効な

ままである。こうしたリスク評価の結果は、食の遅い乳児や周囲の室温が 35°C 付近に達し得るような温暖な地域の乳児に対して *E.Sakazakii* が与える感染のリスクを減少させる実用的な意味を持つのである。

PIF の調乳に 70° C 以上の湯を用いる場合であっても、調製した粉ミルクは 2 時間を越えて室温で放置しないことが推奨される。これは、粉ミルクがその調乳時において既に汚染されていた可能性があることや、あるいは、乳児の口から哺乳カップ又は哺乳ビン中へ有害細菌が侵入した可能性が考えられるためである。又、熱湯(70° C)によって調製粉乳中に存在する有害細菌の芽胞を活性化させた可能性もある。調乳した粉ミルクを冷蔵温度より高い温度で長時間放置することが、有害細菌に増殖させる機会を与えてしまうのである。

#### 2.2.8 粉ミルクのラベル表示

調乳された粉ミルクには、PIF の詳細や患者名、調乳者の氏名、及び調乳された時間と日付がラベル表示されるべきである。医療施設では多くの乳児が看護されていることから、粉ミルクが一括調乳される傾向にある。適切なラベル表示によって、全ての粉ミルクに対するトレーサビリティが確実なものとなる。

# 2.2.9 調乳した粉ミルクの保存

粉ミルクを調乳した後 2 時間以内に消費しない場合には、調乳直後直ちに冷やすものとし、(5°C が上限温度である)冷蔵庫で保存しなければならない。5°C 未満の温度で冷蔵保存することで有害細菌の増殖が妨げられるか、増殖の速度を遅らせることになる。FAO/WHO のリスク評価によれば、調乳した粉ミルクを正しく冷蔵保存した場合であれば、リスクの増加は 1.3 倍にも満たないことが示されている。

冷蔵保存した調乳済み粉ミルクについては、調乳から 24 時間以内で使い切るべきである。PIF の調乳に70° C以上の湯を用いたとしても、腐敗細菌が死滅しない場合もある。これらの腐敗細菌は冷蔵温度で増殖することができ、調乳済み粉ミルクを腐敗させる原因となり得る。溶解した PIF の品質が長時間にわたる保存によって損なわれる可能性もある。調乳が行なわれる区画や環境において微生物汚染のリスクが高い場合には、保存時間を短縮するか、もしくは粉ミルクを新鮮に保ちながら直ちに消費すべきである。

冷蔵庫については、調乳した粉ミルクをその調乳後から1時間以内に5°C未満の温度にまで引き下げられる能力を有するものであるべきである。冷蔵庫内の温度ついては日々モニターする必要がある。熱い粉ミルクが冷蔵庫内の温度を上昇させてしまうことから、調乳した粉ミルクは冷蔵庫に入れる前に速やかに冷却すべきである。調乳した粉ミルクは、冷たい流水下に置くか、冷水を張ったボールに浸しておくことで素早く冷却することができる。

#### 2.2.10 保存した粉ミルクの再加温

5°C以上の温度では有害細菌を増殖させてしまう可能性があるため、保存した粉ミルクについては、授乳を行なう直前のみ冷蔵庫から取り出し、速やかに再加温する必要がある。粉ミルクは15分を越えて加温し続けることがないようにする。これは、長時間再加温することで、粉ミルクを有害細菌の増殖にとって理想的な温度下に置くことになるからである。ボトルウォーマーに粉ミルクを長時間入れたままにしておくことが、*E.Sakazakii*による感染のアウトブレイクの一因となり得ることが報告されている(Gurtler、Kornacki 及び Beuchat、2005年)。

#### 2.2.11 調乳した粉ミルクの運搬

多くの医療機関では調乳を中央調乳室にて行ない、調乳した粉ミルクを異なる病棟ないしは施設内の各エリアにまで運搬している。調乳した粉ミルクを運搬することが調乳から消費までの時間を引き延ばし、有害細菌の増殖の機会を与えてしまうので、感染のリスクをもたらす。

このように有害細菌を増殖させる可能性があることから、調乳から 2 時間以内に消費されることのない粉ミルクについては、その温度が 5°C 未満の温度になるまで、速やかに冷却した上で冷蔵すべきである。その後に、冷やされた調乳済み粉ミルクを配膳先まで運ぶことが可能となる。配膳先では、授乳を目的として当該粉ミルクを再加温できる(第2.2.10項)。又、当該粉ミルクを冷蔵庫に戻した上で、調乳から 24 時間以内であれば使用することも可能である。

運搬に際して 30 分以上時間がかかる場合には、調乳した粉ミルクが温まらないように冷蔵条件下で運ぶことが推奨される。冷蔵運搬することが不可能な場合、アイスパックが入ったクーラーバッグ等の保冷容器に入れて運搬することができる。

# 第3部:家庭内において

#### 3.1 勧告事項

PIF(powdered infant formula: 乳児用調製粉乳)は滅菌された製品ではなく、重篤な疾病の原因となりうる有害細菌によって汚染される可能性がある。正しい調乳と取扱いによって、疾病のリスクは減少する。

可能な限り、リスクの最も高い乳児に対しては、商業的に滅菌されたすぐに使える液状乳児用ミルクが推奨される。

PIF は滅菌された製品でなく、特に適切な調乳や取扱いがなされなかった場合には、乳児に対して感染のリスクをもたらし得る。調乳された PIF は有害細菌の増殖にとって理想的な環境となる。粉乳中での汚染が非常に低いレベルであっても、PIF の不適切な調乳と調乳後の不適切な取扱いによって、存在していた病原菌が増殖するのに理想的な環境となり、感染のリスクを大幅に高めることになる。しかし、PIF を安全に調乳し正しく取り扱えば、疾病リスクを減少させることができる。

以下の勧告では、*E.Sakazakii* による感染リスクを減らすために、PIF を家庭内において安全に調乳、保存、そして取り扱うための最善の方法が概説されている。これらの勧告事項は、サルモネラ菌 (*Salmonella*)の感染リスクを減少させるためにも適用できる。

乳児の保護者や保育者に対しては、医療の専門家が PIF の安全な調乳、保存、及びその取扱いについて指導することが推奨される。

#### 3.1.1 哺乳及び調乳器具の洗浄及び滅菌

乳児への授乳及び調乳に使われた全ての器具を次の使用前までに徹底的に洗浄及び滅菌することは非常に重要である。

- 1. 哺乳及び調乳器具の洗浄と滅菌を行う(下記参照)前には、必ず手を石鹸と清浄な水で十分に洗う。
- 1. 使用に先立ち、哺乳器及び調乳器具を洗浄及び滅菌する前には必ず、(以下に記載の通り)石鹸と清水にて手指を十分に洗浄すべきである。
- 2. 洗浄:哺乳及び調乳器具(コップ、哺乳ビン、乳首及びスプーンなど)は、熱い石鹸水中で十分に洗う。哺乳ビンを使用した場合は、清潔なビン用ブラシ、乳首用ブラシを使用し、びんの内側と外側、乳首をこすり、残った粉ミルクを全て確実に除去する。

- 3. 哺乳及び調乳器具を洗浄した後は、安全な水で十分にすすぐ。
- 4. 滅菌:市販されている家庭用の滅菌器(例えば、電子式ないしはマイクロ波蒸気式の滅菌器)を用いる場合は、メーカーの取扱い説明書に従って行う。哺乳及び調乳器具については以下の方法で煮沸消毒することもできる。
  - a. 大型の容器に水を満たし、洗浄した哺乳及び調乳器具を完全に水中に浸す(中に空気の泡がないことを確認する)。
  - b. 容器にふたをし、沸騰させる(沸騰して湯が無くならないように注意する)。
  - c. 哺乳及び調乳器具が必要となるまで容器にふたをしておく。
- 5. 滅菌器や容器から哺乳及び調乳器具を取り出す前には、必ず石鹸と清浄な水にて手指を十分に 洗浄する。滅菌済みの哺乳及び調乳器具を取り扱う際には、キッチン用のトングを利用することが 推奨される。
- 6. 再汚染を防ぐため、哺乳及び調乳器具を使用の直前に取り出すことが最良である。滅菌器から取り出した器具をすぐに使用しない場合は、カバーをかけて清潔な場所に保管すべきである。哺乳ビンを完全に組みたてておけば、滅菌したビンの内側や乳首の内側と外側からの汚染を防ぐことができる。

#### 3.1.2 PIF を用いた粉ミルクの調乳

調乳された PIF は有害細菌の増殖に対して理想的な条件を与えてしまうため、授乳の都度、PIF を新しく調乳して速やかに使用することが最良である。以下の各手順では、直ぐに消費することを条件として、哺乳ビンや哺乳カップで PIF を調乳するための最も安全な方法の概要が示されている。

- 1. 粉ミルクを調乳する器具の表面を洗浄し滅菌する。
- 2.石鹸と清浄な水で手指を洗い、清潔な布か使い捨てのナプキンを用いて水分を拭き取る。
- 3.十分な量の安全な水を沸騰させる。自動湯沸かし器(電気ポット)を使用している場合は、スイッチが切れるまで待つ。その他の場合は、湯が完全に沸騰していることを確認する。
- 注意:ボトル入りの水も無菌ではないので、使用前に沸騰しなければならない。電子レンジは、加熱が不均衡で、一部に熱い部分(「ホット・スポット」)ができ、乳児の口に火傷を負わす可能性があるので、PIF の調乳には絶対に使用してはいけない。
- 4. 火傷に気をつけて、70°C 以上にまで冷却した適量の沸騰させた水を、清潔で滅菌済みのコップあるいは哺乳ビンに注ぐ。70°C以上を保つために、湯は沸騰させた後30分以上放置しない。
  - a. 大型の容器で大量に調乳する場合:容器を洗浄し滅菌しておく。容器の大きさは最大でも1リットル以下で、食品用の材料で作られ、かつ高温の液体に使用できるものを使用する。
- 5. 表示された量の PIF を正確に量って加える。指定された量よりも多く、あるいは少なく加えることで、 乳児が病気になることもあり得る。

- a. 哺乳ビンを使用する場合:清潔で滅菌済みの哺乳ビンの各部品を、メーカーの取扱い説明書に従って組み立てる。熱湯による火傷に注意しながら、中身が完全に混ざるまで容器をゆっくり振とうまたは回転させる。
- b. コップを使用する場合: 熱湯による火傷に注意しながら、清潔で滅菌済みのスプーンを使用して攪拌して、完全に混ぜ合わせる。
- 6. 調乳後直ちに、水道の流水の下に置くか、冷水または氷水の入った容器に静置することにより、 授乳に適した温度まで短時間で冷却する。冷却水の水面レベルについては、哺乳カップであれば カップの上端よりも下、哺乳ビンならばビンの蓋よりも下にくるようにする。
- 7. 清潔な布または使い捨ての布によって、哺乳ビン又は哺乳カップの外側にある水分を拭き取る。
- 8. 非常に高温の湯が調乳に使用されるため、乳児の口に火傷を負わさないよう、授乳する前に授乳温度を確認することが不可欠である。必要に応じて、上記ステップ 6 に示した方法で、冷却し続けること。9. 調乳後 2 時間以内に消費されなかった粉ミルクは、全て廃棄すること。

#### 3.1.3 時間をおいてからの使用のための事前調乳

調乳された PIF は有害細菌の増殖に理想的な条件となるため、授乳の都度、PIF を調乳し、すぐに 授乳することが最善である。しかし実際上の理由から、調乳した粉ミルクを事前に準備することが必 要になる場合がある。医療環境などでは、大量に準備し、必要となるまで保存しておかなくてはならな いこともある。事前に調乳し、後の使用まで保存しておく場合の最も安全な方法が、下記に示されてい る。冷蔵が不可能な場合は、後で使用するために事前調乳するのではなく、むしろ粉ミルクを新鮮な まま調乳してそれを直ちに消費するべきである。

- 1. セクション 3.1.2 のステップ 1~7 に従って行う。哺乳用コップを使用する場合は、洗浄し滅菌した容量 1 リットル以下のふた付きのビンか容器の中で調乳する。調乳した PIF は、ふた付の容器で冷蔵し、必要に応じてコップに分注することもできる。
- 2. 冷却した粉ミルクは、専用の冷蔵庫に保存する。冷蔵庫の温度は、5°C以下に設定し、毎日モニターする。
- 3. 調乳した粉ミルクは、冷蔵庫で24時間まで保存できる。

#### 3.1.4 保存した粉ミルクの再加温

- 1. 保存した粉ミルクは、必要とされる直前にのみ冷蔵庫から取り出す。
- 2. 15 分を超える再加温をしない。粉ミルクが均一に加熱されるようにするため、蓋付きの広ロビン 又は容器を定期的に振とうする。
- 3. 電子レンジは、加熱が不均衡で、一部に熱い部分(「ホット・スポット」)ができ、乳児の口に火傷を

負わす可能性があるので、温め直しには絶対に使用してはいけない。

- 4. 乳児の口元の火傷を防止すべく、授乳温度を確認する。
- 5.2 時間以内に飲まなかった再加温した粉ミルクは、全て廃棄する。

#### 3.1.5 調乳した粉ミルクの運搬

運搬が行なわれている間に有害細菌を増殖させてしまう可能性があるため、調乳した粉ミルクをまず冷蔵庫内で5°C未満の温度にまで冷やした上で、その運搬を行なうべきである。

- 1. セクション 3.1.3 に示した通りに粉ミルクを調乳し、冷蔵庫に入れること。
- 2. 粉ミルクはその運搬前冷やされていることを確認すること。
- 3. 粉ミルクはその運搬の直前まで冷蔵庫から取り出してはならない。
- 4. 粉ミルクはアイスパックが入った保冷バッグに入れて運搬すること。
- 5. 保冷バッグに入れて運搬された粉ミルクは 2 時間以内に使用すべきである。これは保冷バッグが 粉ミルクを何時までも適切な状態で冷却する訳ではないためである。
- 6. セクション 3.1.4 にある通り、再加温は目的地で行なうこと。
- 7. 2 時間以内に目的地に到着するのであれば、保冷バッグに入れて運搬された粉ミルクは、冷蔵庫に戻し入れることができ、そうした粉ミルクについては調乳後 24 時間以内までならば質的には問題とならない。
- 8. 又、調乳した当日に外出する場合は、小分けにした PIF を洗浄・滅菌済の容器に入れて運搬することができる。行き先においては、粉ミルクの調乳は、洗浄と滅菌を済ませた哺乳器や調乳器具を用い、70°C以上の熱湯を使用して行うことができる。

#### 3.2 勧告の論理的根拠

#### 3.2.1 適正な衛生管理

E.Sakazakii によるアウトブレイクのいくつかの推定原因として「劣悪な衛生状態」が疑われていることが報告されている(Forsythe、2005年)。調乳担当者にあっては、調乳を行なう前に、調乳器具の表面を洗浄及び消毒すべきであり、また石鹸と清浄な水にて手指を洗浄すべきである。これは、有害細菌が手指に付着して持ち込まれる場合や、調乳器具の表面に存在している場合があるためである。手指の洗浄や器具表面の洗浄及び消毒が、調乳の間に粉ミルクが汚染されるリスクを減らすことになる。

E.Sakazakiiを含めた有害細菌類(Drudyら、2006年)が乳児の尿及び便中から見つかることから、トイレの使用後及びオムツ交換の後に手指を洗浄しなければならない。こうした細菌類は手指に簡単に付着し、調乳する間に粉ミルクを汚染することがある。

#### 3.2.2 哺乳及び調乳器具の洗浄及び滅菌

E.Sakazakii のアウトブレイクの中には、調乳で用いた器具に起因するものも報告されている (Gürtler ら、2005 年)。E.Sakazakii は環境中に広く存在しており、ラテックスやシリコン及びステンレス 鋼のような、一般的に、乳児の哺育器具に使用される表面部分に付着しながら増殖(「バイオフィルム」を形成)することが示されている。従って、全ての哺乳器及び調乳器具(例えば、哺乳カップや哺乳ビン、リング及び乳首)は、その使用前に徹底して洗浄及び滅菌することが重要である。これは、これらの器具類の表面におけるバイオフィルムの形成が感染の温床となり得ることがその理由であって、こうしたバイオフィルムは調乳された粉ミルクを持続的に汚染し続ける可能性がある(Iversen、Lane 及び Forsythe、2004 年)。

#### 3.2.3 調乳水の温度

FAO/WHO のリスク評価(FAO/WHO、2006 年)によると、70° C 以上の湯で PIF を調乳する場合、粉乳中に存在している *E.Sakazakii* についてはこの温度で死滅することから、リスクは劇的に減少する。このリスク低下レベルは、授乳時間が長くなった場合(つまり、2 時間まで)や、周囲の室温が 35° C に達する場合であっても維持されるものである。結果として、70° C 以上の湯で PIF を調乳することで、全ての乳児一食の遅い乳児のみならず、調乳した粉ミルクを冷蔵することが容易には出来ないような温暖な地域(例えば、発展途上国)の乳児であっても一に対するリスクを劇的に減少させることになる。

70° C に満たない湯で PIF を調乳する場合、PIF 中に存在する *E.Sakazakii* を完全に不活性化させるのに十分な温度には到達していないことになる。これは以下の二つの理由から懸念される事項である:a) 少数の細菌体であっても疾病の原因となり得ること。従って、PIF 中に存在している *E.Sakazakii* を死滅させることが重要である。及び b) 生き残った *E.Sakazakii* が PIF 中で増殖する可能性があること。こうしたリスクは調乳した粉ミルクを、冷蔵温度以上の温度で長時間放置した場合に増加する。

PIFの調乳において熱湯を用いることについて懸念が持ち上がっているが、70°C以上の温度の湯を用いたときだけ、E.Sakazakii によるリスクは劇的に低下するのである(付録 3 参照)。現在、多くのPIF 製品の取扱い説明書では PIF を 50°C 付近の湯で調乳するよう求めているが、FAO/WHO のリスク評価によれば、50°Cの湯による調乳は、調乳した粉ミルクを直ちに消費しない限り、一般的に見てリスクを最も増加させることになる。50°Cの湯で PIF を調乳する場合、如何なる状況下であれ、リスクを減少させることにはならないのである。このリスク評価の結果に照らして、メーカーの取扱い説明書を見直すべきである。

#### 3.2.4 調乳した粉ミルクの保存

PIF には有害細菌が含まれている可能性もあるため、PIF については授乳の都度、新しく調乳することが最良である。しかしながら、実際問題としては、これを常に行なう訳にもいかない。例えば、託児

所やベビーシッター、あるいは当日に外出する場合のように、事前に粉ミルクを調乳する必要に迫られる場合もある。こうした状況下では、粉ミルクを 70°C 以上の湯を用いて調乳した場合、調乳直後から直ちに冷却し、それを冷蔵庫内(5°C以下)で24時間を越えることなく保存するべきである。

冷蔵保存した調乳済み粉ミルクについては調乳から 24 時間以内で使い切るべきである。PIF の調乳に 70° C 以上の湯を用いたとしても、腐敗細菌が死滅しない場合もある。これらの腐敗細菌は冷蔵温度で増殖することができ、調乳した粉ミルクを腐敗させる原因となり得る。溶解した PIF の品質が長時間にわたる保存によって損なわれる可能性もある。

熱い粉ミルクが冷蔵庫内の温度を上昇させてしまうことから、調乳した粉ミルクは冷蔵庫に入れる前に速やかに冷却すべきである。調乳した粉ミルクは、冷たい流水下に置くか、冷水を張ったボールに浸しておくことで素早く冷却することができる。

#### 3.2.5 保存した粉ミルクの再加温

5°C 以上の温度では有害細菌を増殖させてしまう可能性があるため、保存した粉ミルクについては、授乳を行なう直前のみ冷蔵庫から取り出し速やかに再加温をする必要がある。粉ミルクは 15 分を越えて加熱し続けることがないようにする。これは、長時間再加温することで、粉ミルクを有害細菌の増殖にとって理想的な温度下に置くことになるからである。ボトルウォーマーに粉ミルクを長時間入れたままにしておくことが、*E.Sakazakii* による感染のアウトブレイクの一因となり得ることが報告されている(Gurtler、Kornacki 及び Beuchat、2005 年)。

#### 3.2.6 調乳した粉ミルクの運搬

調乳した粉ミルクを運搬することが調乳から消費までの時間を引き延ばし、有害細菌に増殖の機会を与えてしまうので、感染のリスクをもたらす。このように、有害細菌を増殖させる可能性があることから、運搬が必要とされる粉ミルクについては運搬に先立ってその温度が下がるまで、速やかに冷却した上で冷蔵する必要がある。

有害細菌の増殖を最小限に抑えるため、冷却された粉ミルクについては、運搬直前に冷蔵庫から取り出すものとし、保冷バッグに入れて運搬すべきである。目的地では、授乳させるために当該粉ミルクを再加温することができる。保冷バッグに入れられた粉ミルクについては2時間以内に使用すべきである。又、運搬した粉ミルクを2時間以内に冷蔵庫へ戻した場合は、調乳から24時間以内であれば保存することも可能である。これらの手順を踏まえれば粉ミルクは冷やされ続けることになり、そうすることによって有害細菌の増殖速度を遅らせるか、増殖自体を抑えることができる。

#### 3.2.7 保存時間及び授乳時間

E.Sakazakii の感染のリスクをコントロールするためには、調乳から消費に至る時間を最小限にする

ことが有効な手段となる。調乳した粉ミルクについては、その調乳以降冷蔵庫で保存されていない限り、2 時間以内に廃棄をすべきである(セクション 3.1.3 を参照)。使い残した粉ミルクを後で使用したり、新しく調乳した粉ミルクに加えたりすることは決してしてはいけない。これは、授乳が行なわれる間に有害細菌がその増殖の機会を獲得した可能性があるためである。

PIF の調乳に 70° C 以上の湯を用いる場合であっても、調製した粉ミルクは 2 時間を越えて室温で放置しないことが推奨される。これは、粉ミルクがその調乳時において既に汚染されていた可能性があることや、あるいは、乳児の口から哺乳カップ又は哺乳ビン中へ有害細菌が侵入した可能性が考えられるためである。又、熱湯(70° C)によって調製粉乳中に存在する有害細菌の芽胞を活性化させた可能性もある。調乳した粉ミルクを冷蔵温度より高い温度で長時間放置することが、有害細菌に増殖させる機会を与えてしまうのである。

#### 付録 1

FAO/WHO 合同専門家会議で採択された勧告の概要(FAO/WHO、2004年):

- ・ 乳児が母乳哺育でない場合、特に高リスクの乳児の保育者に対しては「PIF は無菌製品ではなく、 重篤な疾病を引き起こしうる病原菌に汚染されている可能性があること」を常に注意喚起する必要があり、そうしたリスクを減少させ得る方法について情報を提供すべきである。
- ・ 乳児が母乳哺育でない場合、特に高リスクの乳児の保育者に対しては、可能な限り、市販の滅菌 済みである液体調製乳か、効果的な汚染除去手順によって調乳された調製乳(例えば、熱湯を 用いて溶解する、もしくは溶解した粉乳を加熱する)の使用を奨励すべきである。
- ・ リスクを最小限に抑えるべく、PIF の調乳や使用、及びその取扱いに関するガイドラインを作成すべきである。
- ・ 乳児用食品関係業界に対しては、高リスクグループのため、商業的滅菌済みの多様な範囲の母乳代用食品を開発するよう奨励すべきである
- ・ 乳児用食品関係業界に対しては、製造環境中及び PIF 中の双方において、*E. sakazakii* の濃度や 陽性率を減少させるよう奨励すべきである。このために、乳児用食品関係業界にあっては、効果 的な環境監視プログラムの実施や、工場での生産ラインにおける衛生管理の指標として、大腸 菌群ではなく腸内細菌科(*Enterobacteriaceae*)に属する菌を利用した検査の実施を検討する必要がある。
- ・ 衛生規範の改訂に際し、コーデックス委員会は PIF の微生物学的リスクに対するより的確な対応を取るべきであり、もし必要であると判断する場合には、*E.Sakazakii* に関する微生物学的規格の確立についてもコーデックス規格に含めるべきである。
- ・ FAO/WHO にあっては、開発途上国における特定の要求に対応すべきであり、例えば HIV 陽性である母親を持つ乳児や低出生体重児のように、非常に困難な状況下で母乳代用食品が用いられることになる場合には、リスクを最小限に抑えるべく効果的な対策を確立すべきである。
- E.Sakazakii 及び腸内細菌科に属する他の細菌に対する国際的に妥当性確認された(validated)有効な検出法や分子タイピング法の利用を促進すべきである。
- E.Sakazakii 及び腸内細菌科に属する他の細菌による疾病感染の感染源と感染媒体(PIF を含む)

について調査及び報告するよう奨励すべきである。これには「検査機関をベースとするネットワークの構築」が含まれる場合もある。

・ E.Sakazakii についての生態学や分類学、病原性及びその他の諸特性について、並びに、溶解した PIF 中における E. sakazakii の含有レベルを低下させる方法についての更なる理解を深めるため の研究を推進すべきである。

#### 付録 2

#### 母乳保育を成功させるための 10 カ条

(WHO/UNICEF による「赤ちゃんにやさしい病院イニシアティブ(BFHI)」からの引用)

- 1. 母乳育児推進の方針を文書にして、すべての関係職員がいつでも確認できるようにしましょう。
- 2. この方針を実施するうえで必要な知識と技術をすべての関係職員に指導しましょう。
- 3. すべての妊婦さんに母乳で育てる利点とその方法を教えましょう。
- 4. お母さんを助けて、分娩後30分以内に赤ちゃんの母乳をあげられるようにしましょう。
- 5. 母乳の飲ませ方をお母さんに実地に指導しましょう。また、もし赤ちゃんをお母さんから離して収容しなければならない場合にも、お母さんの分泌維持の方法を教えましょう。
- 6. 医学的に必要でないかぎり、新生児には母乳以外の栄養や水分を与えないようにしましょう。
- 7. お母さんと赤ちゃんが一緒にいられるように、終日、母子同室を実施しましょう。
- 8. 赤ちゃんが欲しがるときは、いつまでもお母さんが母乳を飲ませてあげられるようにしましょう。
- 9. 母乳で育てている赤ちゃんにゴムの乳首やおしゃぶりを与えないようにしましょう。
- 10. 母乳で育てるお母さんのための支援グループ作りを助け、お母さんが退院するときにそれらのグループを紹介しましょう。

#### 付録 3

熱に敏感な栄養素が失われることに対する懸念や、熱湯による乳児や調乳者への火傷の危険性、セレウス菌(Bacillus cereus)又は他菌種の芽胞の活性化、及び粉乳を固まらせてしまうといった理由から、PIFによる調乳に際し熱湯を用いることについては疑問視されてきた(FAO/WHO、2006年)。ESPGHAN3の栄養委員会では、熱湯を使用することや調製済みである粉乳を沸点近くの温度にまで加熱することについて異論が唱えられた。それは、熱湯を使用することでビタミン類のような栄養素に対して悪影響が及ぶことがその理由であった(Agostoniら、2004年)。2002年10月、米国農務省は、保健専門家に向けた勧告の内容からPIFの調乳時には熱湯を使用すべきであるとしていた条項を削除した。その理由としては、熱に対して敏感な栄養素を損失させる可能性があること、いくつかのPIFの物理的な特性を変化させてしまうこと、E. sakazakiiを十分に死滅させることを保証する能力がないこと、及び調乳を行なう病院スタッフが火傷する恐れのあることが挙げられた(米国 FDA、2002年)。しかしながら英国では最近、PIFの調乳に関してその助言内容を更新しており、PIFを使用することによるリスクを減少させるため、PIFについては70°C以上の温度の熱湯で調乳することが推奨されている(FSA、2006年)。

FAO/WHO 専門家会議(2006 年)ではこれらの懸念が検討された。当該会議において提示された「調乳時に熱湯を用いることによるビタミンレベルの低下」に関するデータによれば、ビタミン C が大きな影響を受ける唯一のビタミンであることが示された(試験に用いた4種類の粉乳におけるビタミンレベルの低下範囲は 5.6~65.6%)。但し、こうした製品ではその保存期間中におけるビタミンの損失を補うため、全ての粉乳について実際にはその表示よりも高いレベルのビタミン C が含まれている。熱湯によって調乳された後も、4種類の粉乳の内 3 つについては、その表示よりも高いレベルでビタミン C が含有されていた。残る検体では熱湯によりビタミン C が 65.6%低下した後でも含まれていたビタミン C は 100 カロリー当たり 9.0mg であり、このビタミンレベルは、PIF のコーデックス規格で要求されるビタミン C の最小レベル(100 カロリー当たり 8mg)よりも依然として高いものであった(CAC、1981 年)。

この調査では、70° C以上の温湯を用いることで生じるビタミンレベルの低下が重要ではないことを示唆しているように思われる。しかしながら、1件の調査結果を議論したに過ぎないこともあり、専門家会議ではこの問題に関する何らかの具体的な勧告がなされることについて合意するまでには至らなかったが、「非常に高温な熱湯による PIF の調乳が推奨されることになる場合、ビタミン類の何らかの低下に対応することを目的として成分強化粉乳も選択肢となり得る」との内容が言及された。

非常に高温の熱湯を使用することに関するその他の懸案事項への対応に際して、FAO/WHO 合同専門家会議では「ラベル表示による啓発メッセージ、及び PIF を調乳する者や授乳する者に対する研修を通じて、火傷に対するリスクへの対応が可能である」と結論付けられた。非常に高温の熱湯を使用すれば細菌の芽胞を再活性化させる恐れがあるという問題はあるものの、この問題については、

適切な授乳温度にまで冷却した後で粉ミルクを直ぐに使い切ることや、後で使用するのであれば冷蔵することによって対処するべきである。最近のリスク評価で報告された調査結果によれば(オーストラリア・ニュージーランド食品基準局、2003年)、粉乳におけるセレウス菌のレベルについては、使用する熱湯の温度(56°C又は90°Cのいずれか)及び後の冷却条件に左右されないことが示されている。現行で与えられているガイダンスであれば、セレウス菌によるリスクには繋がらないことがこのリスク評価で示唆された。最後になるが、高温の熱湯で粉乳を溶解する場合であっても、全ての PIF が固まってしまうわけではなく、粉乳が固まったとしても現在の技術を持ってすればこうした問題に対応できるものと思われる。

<sup>3</sup> 欧州小児栄養消化器肝臓病学会

#### 本文中で引用した参考文献

- Agostoni, C., Axelsson, I., Goulet, O., Koletzko, B., Michaelsen, K.F., Puntis, J.W.L. et al. 2004.

  Preparation and handling of powdered infant formula: a commentary by the ESPGHAN

  Committee on Nutrition. *Journal of Pediatric Gasteroenterology and Nutrition*, 39:320–322.
- CAC [Codex Alimentarius Commission]. 1979. Recommended international code of hygienic practice for foods for infants and children (CAC/RCP 21-1979). See: http://www.codexalimentarius.net/web/standard\_list\_do?lang=en
- CAC. 1981. Codex Standard for Infant Formula (Codex Stan 72-1981). See: http://www.codexalimentarius.net/web/standard\_list do?lang=en
- CAC, 1987. Codex Standard for Foliow-up Formula (Codex Stan 156-1987). See: http://www.codexalimentarius.net/web/standard\_list\_do?lang=en
- CAC. 2007. Codex Standard for Infant Formula and formulas for special medical Purposes Intended for Infants (Codex Alinorm 07/30/26, Appendix II). (To be adopted in July 2007). See: http://www.codexalimentarius.net/download/report/669/al30\_26e.pdf
- CAC. 2004. Report of the 25th Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses, Bonn, Germany, 3-7 November 2003. Codex Alinorm 04/27/26. Document J1464e. Available from: http://www.fao.org/docrep/meeting/008/j1464e/j1464e00.htm
- CDC [Centres for Disease Control and Prevention (USA)]. 2002. FoodNet annual report, 2002. Available from: http://www.cdc.gov/foodnet/annual/2002/2002AnnualReport tables&graphs.pdf
- Drudy, D., Mullane, N.R., Quinn, T., Wall, P.G. & Fanning, S. 2006. Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clinical Infectious Diseases, 42(7):996–1002.
- FAO [Food and Agriculture Organization of the United Nations]/WHO [World Health Organization]. 2004. Enterobacter sakazakii and other microorganisms in powdered infant formula. Meeting report. Geneva, Switzerland, 2-5 February 2004. [FAO/WHO] Microbiological Risk Assessment Series, No. 6
- FAO/WHO. 2006. Enterobacter sakazakii and Salmonella in powdered infant formula. Meeting Report.

  Joint FAO/WHO Technical Meeting on Enterobacter sakazakii and Salmonella
  Powdered Infant Formula, Rome, Italy, 16–20 January 2006. [FAO/WHO]
  Microbiological Risk Assessment Series, No. 10.
- Forsythe, S. 2005. Enterobacter sakazakii and other bacteria in powdered infant milk formula. Maternal and Child Nutrition, 1(1):44-50.
- FSA [Food Standards Agency, UK]. 2006. Guidance on preparing infant formula. Article first posted 13 February 2006; accessed 25 November 2006. Available at: http://www.food.gov.uk/news/newsarchive/2005/nov/infantformulastatementnov05
- FSANZ [Food Standard Australia New Zealand]. 2003. *Bacillus cereus* in infant formula. Microbiological risk assessment report.
- Gurtler, J.B., Kornacki, J.L. & Beuchat, L.R. 2005. Enterobacter sakazakii: A coliform of increased concern to infant health. International Journal of Food Microbiology, 104(1):1-34.
- Gürtler, M., Atler, T., Kasimir, S. & Fehlhaber, K. 2005. The importance of Campylobacter coil in human campylobacteriosis: prevalence and genetic characterization. Epidemiology and Infection, 133(6):1081-1087.

- Iversen, C., Lane, M. & Forsythe, S.J. 2004. The growth profile, thermotolerance and biofilm formation of *Enterobacter sakazakii* grown in infant formula milk. *Letters in Applied Microbiology*, 38(5):378-382.
- Muytjens, H.L., Roelofs-Willemse, H. & Jasper, G.H.J. 1988. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. *Journal of Clinical Microbiology*, 26:743-746.
- US FDA [U.S. Food and Drug Administration]. 2002. Health Professionals Letter on Enterobacter sakazakii infections associated with use of powdered (dry) infant formulas in neonatal intensive care units. 16-3-2006. See: http://www.cfsan.fda.gov/~dms/inf-ltr3.html
- WHA [World Health Assembly]. 2005. Resolution WHA 58.32 on Infant and young-child nutrition. See: http://www.who.int/gb/ebwha/pdf\_files/WHA58/WHA58\_32-en.pdf or http://www.who.int/gb/e/e\_wha58.html
- WHO [World Health Organization]. 1981. International Code of Marketing of Breast-Milk Substitutes. Available at: http://whqlibdoc.who.int/publications/9241541601.pdf
- WHO/UNICEF [United Nations Children's Fund]. 2003. The Global Strategy for Infant and Young Child Feeding. WHO, Geneva. See: www.who.int/child-adolescent-health/New\_Publications/NUTRITION/gs\_iycf.pdf